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Abstract

This chapter introduces the idea of embedding orthogonal transforms
into binary signals. Some of the interesting results of this chapter is that
binary waveforms can even carry sinusoids, wavelets, and all other in-
teresting things that were previously, thought to be only applicable to
continuous numbers. The goal of this chapter is to lay foundations for our
extensions of the work by G.Giani, S.Sheng, V.D.Agarwal, S.Hiaso. The
next chapter takes our results futhur and proves specific results.

1 Impossibility of existance of a real weighset
that simulatenously sets AND/OR gate out-
put to 0.5

Proof. Take AND gate for i > 1,

n∏
i=1

Xi = 0.5

And take an OR gate,

1 −
n∏

i=1

(1 − Xi) = 0.5

Now, rewrite it,
n∏

i=1

(1 − Xi) = 0.5

Now, take the AND expression and rewrite it as,

n−1∏
i=1

Xi = 0.5/Xn

and take the OR expression and rewrite it as,



n−1∏
i=1

(1 − Xi) = 0.5/(1 − Xn)

Add both equations,

n−1∏
i=1

Xi +
n−1∏
i=1

(1 − Xi) = 0.5/Xn + 0.5/(1 − Xn)

set b =
∏n−1

i=1 Xi +
∏n−1

i=1 (1 − Xi),
now, the expression becomes,

b = 0.5
1 − Xn + Xn

(1 − Xn)(Xn)

when rewritten, it becomes

Xn − X2
n = 0.5/b

X2
n − Xn + 0.5/b = 0

If the determinant b2 − 4ac of the above equation,

1 − 0.5 · 4/b < 0

the solution is complex,and so, no real solution exists.
because b =

∏n−1
i=1 Xi +

∏n−1
i=1 (1−Xi) can never be greater than 2, if Xi are

weightsets. It makes 2 > b which implies 2/b > 1, 0 > 1 − 2/b, which proves
that no-real solution exists. The case, when

1 − 2/b = 0 (1)
1 = 2/b (2)
b = 2 (3)

(4)

This case happen only if
∏n−1

i=1 Xi = 1 and
∏n−1

i=1 (1 − Xi) = 1 . This specific
condition is impossible to be solved using a real weight set. And therefore ends
our proof, why the one cannot set both an n-input AND gate and an n-input
OR gate, to 0.5.

2 An ’Unconventional’ solution

Now imagine a 10 1-bit square waves with the same frequency. Now, since all
of them are 1 simulatenously and are 0 too at the same time, they will get the
output probability of both the 10-input AND gate and 10-OR gate to 0.5.
It should be noted that this solution does not translate itself to a better weight
set since the inputs are allowed only to oscillate between 1111...1 and 0000...0.
Anyways, it does go on to show that extending a static weight set to a variable
one does allow us to solve problems that are not easily realizable using ordinary
static weight sets.



3 Variable RTG:A Spectral Set

We try to explore, interesting consequences, of extending the idea presented in
the above section.
Consider the following example with a logic AND gate Z with inputs X and Y.
Using Parker Mulclusky equations, we can represent Z as,

Z = X · Y (5)

To demonstrate this idea, we assign

Xprob(t) = AX + BX sin(2πfXt) (6)

Yprob(t) = AY + BY sin(2πfY t) (7)

As we already know, X is a real, restricted to the interval [0,1] and so is Y. Since,
these are probabilistic real variables, to generate their binary counter parts, we
just take,

Xbinary(t) = rand() < Xprob(t) (8)

Ybinary(t) = rand() < Yprob(t) (9)

Now, you may well ask, are the induced frequency effects observable on Xbinary(t)
and Ybinary(t). Yes, they are, if we take the fft of the signal over time.

Xfft(f) = fft(Xbinary(t)) (10)

Yfft(f) = fft(Ybinary(t)) (11)

Here are sample normalized plots of variables

X = rand() < .5 + .3 sin(.4πt) (12)

Y = rand() < .5 + .3 sin(.6πt) (13)

and the resultant variable

Z = X · Y (14)

for 10,000 samples.



3.1 Results

We observe frequency peaks surrounded by noise. We also observe constructive
and destructive interference of the input frequencies. The results should be of
no surprise, to people, who are familar with spectral testing. The apparent noise
barges in, during the turnication of the ’real’ input variable to a binary random
input variable. The results are pretty encouraging because the frequency effects
are visible. And indeed,as you might guess, the destructive interference from
the frequency components can sometimes affect even the overall probability of
output. Later on,we will try to use these ideas to evolve a spectral testset.



4 Proof by Parker-Mcklusky equations and Monto
Carlo

Now, the pdf of a binary variable xi is given by

pdf(xi) = (1 − pi)δ(xi) + piδ(1 − xi) (15)

where δ(xi) is the Dirac delta. Now, suppose, probability of xi, being a 1, varies
over time. The pdf takes the following form.

pdf(xi, t) = [1 − pi(t)] δ(xi) + pi(t)δ(1 − xi) (16)

Now, to calculate the expected value of a combinational binary function C(X),
at time instant t,

E[C|t](X) =

[
n∏
i

∫ ∞

−∞
dxipdf(xi, t)

]
C[X] (17)

Now, suppose the [C](X), is just xn or x AND itself n times. Then, the expected
value, is

E[C|t](X) =
∫ ∞

−∞
dx [1 − px(t)] δ(x) + px(t)δ(1 − x) [xn] (18)

= px(t) (19)

Now,for an AND function of binary variables x and y, we can use the same
formulation to prove that it is px(t)py(t).
There is a Monto Carlo way to make sense of the idea too. Traditionally, we
have a weightset X. Now, suppose, X changes in time, let us call it X(t). Now,
suppose, we stop at some instant t and create many many binary input vector,
repeatedly, by taking

Xbinary(t) = rand() < X(t) (20)

Now, the expected value of the circuit’s output, can be computed by taking
averaging the zeros and the ones at the output. This value, would be the same
as the one computed for Parker-Mcklusky expressions for X(t), at time instant t.

Over an interval of time, the overall output probability, will change.

E[C](X) =
1

tn − t0

∫ tn

t0

dt

[
n∏
i

∫ ∞

−∞
dxipdf(xi, t)

]
C[X] (21)

That would be, for a binary variable x with a changing pdf, it becomes 〈px(t)〉.
The concept of most interest, is not even these. We shall discuss the idea of
orthogonal transformations, in the next section.



5 Orthogonal Transformations

Now, generally speaking, we across orthogonal transformation, a lot in ana-
log circuit theory. The most prelavent transformation is the fourier-transform.
Then, there is the laplace transform, the wavelet transform, etc, all with differ-
ent uses. Now, here are some basic properties of othogonal transforms.
Suppose, there exists φi(t) such that

1
tn − t0

∫ tn

t0

dtφi(t) = δi0 (22)

and

1
tn − t0

∫ tn

t0

dtφi(t)φ∗j (t) = δij (23)

where δij is 1,only when i and j are equal. Now, interestingly, it can be proven
that any square integral function f(t), integrated over a sufficiently large t, can
be written as

f(t) =
∑

i

aiφi(t) (24)

where ai is given by

1
tn − t0

∫ tn

t0

dtφ∗i (t)f(t) (25)

which can also be neatly written as 〈f(t)φi(t)〉.
Now, we can define

E[C|φi](X) =
1

tn − t0

∫ tn

t0

dtφ∗i (t)

[
n∏
i

∫ ∞

−∞
dxipdf(xi, t)

]
C[X] (26)

Suppose, we try to tranform the output of an input variable x, ANDed n times,
we would get 〈px(t)φi(t)〉

6 Limitations of Transformations

The biggest limitation is enforced by shannon’s information theory. That would
mean, that if you are using binary input vectors and calculating probabilities,
by samplying, the more the sample, the closer, your transformation of ad-hoc
data, matches the theoretical one. Covergence, would be an issue, depending
on the type of othorgonal transform, the region it is valid in, etc.


