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Abstract

The goal of this paper is to introduce non-lattice based computational
of physics.The model presented here,is no means, an effort at TOE. The
attempt is be true to the following goals:

build a model that doesnt make reference to shape of point.

build a model that doesnt make reference to the number of spatial
dimensions.

build a model that is computational universal: that is,one you can
program, and run programs with etc.

build a model that has basic properties, required by physics like
parity, translation symmtery, rotational symmtery, etc.

build a model that is non-local.

build a model that is compliant with relativity.
Although, the author has not completely succeeded in showing that

the model meets all these goals throughly, he does come close.
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1 The Motivation

1.1 Non-coordinate Finite State Autonoma?

Interesting term, but does it mean? Well,non-coordinate refers to that
fact that particles, within the simulation, do not explicitly carry a 4-d
coordinate point (x,y,z,t), that describe thier location in space-time.
You can even say, that the simulation is coordinate free and that it doesnt
refer to any particular coordinate system or basis.
Traditional CA, like GOL or Ed Fredkin’s billard ball models, Norm Mar-
golus’s lattice gas models, etc, could also be described as coordinate free
system, since particles, within the system do not specifically carry coor-
dinates.
But, let’s stop here. The shape of a pixel (in the universe) ? What is it?
a cube, a square, a hexagon, a circle, a sphere,etc. But wait, why should
it, even have a shape?
Can a pixel be just discrete and yet have no shape? Personally, this is
where the bet is: although the universe is a discrete system, the pixel, in
his opinion, should have no shape. His opinion is not orginal in any sense.
In fact, the physics community has been reluctant to accept Ed Fredkin’s
ideas, for this exact reason.

1.2 One of Several Possible Answers

Now, the question, remains, if one can concieve such a system, and simu-
late it. Although, the relativistic aspect of that system is sketchy, and the
system does not manipulate bits, in a traditional CA sense, the system
can be shown to be atleast Newtonian, while at the same time, being true
to its orginal goal, by avoiding reference to shape of a point and still be
coordinate free.

2 The Setup

The system is setup with N particles. particle i is at sij invariant distance
away from particle j. We have an N2 matrix elements, most of them
carrying redundant information, of each others location. The system is
also assumed to be symmetric sij = sji and that sii is undefined and
importantly bsij = −bsji .This is the all the information, the system has. It
doesnt make any other assumption, as to system, being a 2d, 3d , 4d , 5d
or k-d. Just particles, away from each other at some invariant distance.
The author uses a physicist’s definition of the term ’invariant distance’,
meaning that different observers(point-like particles, in our case) will all
agree on their measurement of invariant distance, independent of their
coordinate system.
Now, the question is how can one simulate the system? So, one starts
looking around, as to what should be fundamental, to the system. So,
why not start at Newton’s first law?



2.1 Newton’s First Law

Newton’s first law states that every particle continues its state of rest, or
state of motion.
If Newton’s law is so fundamental to the universe, one starts to question,
what it means in the context of computer generated world. After pon-
dering, and taking many wrong paths, the author justifies its importance
in the following manner. For Newton’s law to be the most natural to the
universe, it should be the easiest to implement in the computer simulation.

2.2 An Interesting Observation

Now, let’s take a moment of digression, to fundamentals of geometry: the
law of cosines. Suppose, we are given 3 points ABC,

.....................A...................

..................../.\..................

................./.....\.................

.............../........\................

............./...........\...............

............B-------------C..............

According to the law of cosines,

AC2 = AB2 + BC2 − 2AB ·BC (1)

AB ·BC =
1

2
(AB2 + BC2 −AC2) (2)

The law of cosines, is important for the above reason. One can calculate a
DOT product, by only knowing of the distances between the points that
make the triangle. And even more importantly, the law of cosines doesnt
make any reference to any coordinate system or basis.

3 Method of Simulation

We stop, and we go back to Newton’s law. There are N particles.They are
away from each other at an coordinate invariant distance sij . Suppose,
we have a particle i. Suppose particle j, changes it distance sij away from
it. Now, it changes its distance away from the other particles, in system.
Now, to simplify calculations, suppose, each relative distance is along an
axis bsij . Let’s start with 2-d Newtonian simulation, which is easily ex-
tendabke to 3d or even 4d.

We start in absolute Euclidian coordinates, where particle i is at loca-
tion (xi, yi). It’s distance to particle j is given by

sij = |(xi − xj , yi − yj)| (3)

And suppose, the particle changes by ∆
−→
d = (∆x, ∆y). The change in

distance from i to particle j is

|(xi − xj + ∆x, yi − yj + ∆y)| (4)



If ∆x and ∆y are small, then

|(xi − xj + ∆x, yi − yj + ∆y)|2 (5)

= (xi − xj)
2 + 2(xi − xj)∆x + ∆x2 (6)

+ (yi − yj)
2 + 2(yi − yj)∆y + ∆y2 (7)

= (xi − xj)
2 + (yi − yj)

2 (8)

+ 2(xi − xj)∆x + 2(yi − yj)∆y (9)

= s2
ij + 2−→sij ·∆

−→
d (10)

Suppose we take the above expression and do a bit of rewriting.

= s2
ij + 2−→s ij ·∆

−→
d (11)

= s2
ij(1 + 2

−→s ij ·∆
−→
d

s2
ij

) (12)

= s2
ij(1 + 2

bsij ·∆
−→
d

sij
) (13)

(14)

taking
√

and expanding by first order approximation gets,

= sij

r
1 + 2

bsij ·∆
−→
d

sij
(15)

= sij(1 +
bsij ·∆

−→
d

sij
) (16)

= sij + bsij ·∆
−→
d (17)

In the general case, one would obtain

dskj

dτ
= bskj · −→uj (18)

where uj is the velocity of the particle j. Now, within our system, one can-
not define u like a vector, for example, as in (ut,ux,uy, uz). Instead, one
can write a algebraic rule for u, in terms of direction of other particles,for
example, like in

−→u = abspq + bbslm + cbsna + ... (19)

where a,b,c etc are constants.
NOTE: We will interpret the above rule to mean that the observer can
only make measurements, in terms of other particles in systems.

3.1 Implementation

The rule by itself, is ambigious. For example, given a bunch of particles,
j, k, etc, the order, in which, one applies the rules, is not complelely clear.
Take

dskj

dτ
= bskj · −→uj (20)



dsjk

dτ
= bsjk · −→uk (21)

where each rule has to change sjk and skj , just to be consistant.

dskj

dτ
= bskj · −→uj (22)

dskj

dτ
= −bskj · −→uk (23)

But which rule goes first? or do they both, go first? One non-ambigious
way to sort this problem, is by assuming that the sjk on the RHS, always
comes from the previous step. So, the actual implementation, should
behave more like,

dskj

dτ
= bskj · [−→uj −−→uk] (24)

3.2 An Obvious Coordinate Problem?

Now, if you have already noticed,bspq is a vector,and it requires direction
components in terms of a coordinate basis. So, you would be inclined to
ask, how we can get away with not knowing the coordinates, if our rules
make reference to them. Notice that, in

dskj

dτ
= bskj · −→uj (25)

skj is a scalar, and bskj · −→uj is also a scalar. And this where the law of
cosine comes to our help. It allows us to calculate the dot product bskj ·−→uj

without actually knowing about the components of skj , or −→uj , but by only
using the invariant distances , with which, we are simulating.

Now, suppose particle i moves away from j, at velocity −→uj . And sup-
pose, −→uj is given by

−→uj = absiq + bbsip + cbsir (26)

where q, p and r are particle indecies. Now, we know the rate of distance
skj increase, is given by

bskj · −→uj = −→uj · bskj (27)

= absiq · bskj + bbsip · bskj + cbsir · bskj (28)

Now, to calculate bsiq · bskj , we first take,

bsiq =
−→skq −−→ski

siq
(29)

Now to calculate −→skq · bskj , we can just reuse our law of cosine relation.

−→skq · bskj =
−→skq · −→skj

skj
(30)

=
1

2skj
(s2

kq + s2
kj − s2

qj) (31)

(32)



Now, to calculate bsiq · bskj , we can just

= 1
2skjsiq

(s2
kq + s2

kj − s2
qj − s2

ki − s2
kj + s2

ij) (33)

= 1
2skjsiq

(s2
kq − s2

qj − s2
ki + s2

ij) (34)

= 1
2skjsiq

(s2
kq − s2

ki + s2
ij − s2

qj) (35)

So, when we work everything out, we have a system, that allows us to
simulate particles, (atleast for the Newtonian case), without expliciting
describing in the system in a particular coordinate basis.

4 Properties

4.1 Non-Local!

Interestingly yes. The system is non-local, because the locality in the sys-
tem, and the locality in the world generated by the system are different
things, and so, it definitely does accommodate for Bell’s theorem. Not
only is that true, the model inherently has non-local elements, incorpo-
rated into it and so, will give specific predictions, as of their effects.

4.2 Non-Linear!

Given the rules where

dskj

dτ
= bskj · −→uj (36)

where

−→uj = absab + bbscd + cbsef + ... (37)

Suppose −→uj = bsiq. Immediately, we will have

dskj

dτ
=

1

2skjsiq
(s2

kq − s2
ki + s2

ij − s2
qj) (38)

such a system is non-linear. Now, suppose siq depends on skj , such a
system is non-linear, and even worse.

4.3 Not a Traditional CA!

There are some fundemental issues, that needs to be addressed. Take, the
law of cosines.

AB BC cos(∠ABC) =
1

2
(AB2 + BC2 −AC2) (39)

Calculation of AB2 and divisin by AB BC is pretty inexpensive opera-
tion, compared to taking the cos(∠ABC). But the use of a mathematical
formula, for the simulation, goes against the whole philosophy of CA sys-
tems. There is a famous debate between Johz Baez and Ed Fredkin, as
to whether CAs are ’mathematical’. There is something even more fun-
damental than these mathematical rule, and the mathematics must be
emergent.



5 Universality and Momentum Conser-
vation

The system could be made computational universal, by adding laws of
momentum conservations and adding two types of particle and their inter-
actions. The author does not claim that these particle directly correspond
to particles, in physics
One of Ed Fredkin and Toffeli’s best papers is ’Conservative Logic’. The
paper can be found at

http://www.digitalphilosophy.org/download_documents/ConservativeLogic.pdf

There, they dicuss, how one can build a reversible and universal Fredkin
gate, from just billard ball interactions. Although, we will depend their
approach, to show that the system, is universal, we will not depend on
their arguement to show that it is time-reversible.
In Fredkin and Toffeli’s paper, if a ball is at location (t,x,y,z), there is
a logic 1 in that location. If there no ball is at location (t,x,y,z), it cor-
responds to logic 0. Fredkin and Toffeli realize their reversible universal
gate, by having the balls collide at 90 degrees at each other, and using
the law of conservation of momentum, between the balls and between the
balls and objects called mirrors. In the following sections,we will outline
a method, for detecting collisions and conserving momentum

5.1 Detecting An Interaction

To detect collisions between particles, we check their sij . If it is within an
ε, they have collided. Relativistically, this solution is bound to fail,since
relativistic sij = 0 would refer to a null path. Instead, the best way to
detect a collision is to check entries of six with sjx and syi with syj . If
they are all equal, to about some ε, they are particles, occuping the same
space. So, we have a collision. If more than two particles, mange to
occupy the same space, precedence could be given based on their column
index position, in the matrix, but we will not make. Such a rule would
be non-ambigious. But we will, for now, not make any such unwanted
assumptions about the model. Ambiguities would be automatically dealt,
by adding many-world rules to the mixture.

5.2 Conserving Momentum

Suppose, if we assume that all particles are composed of unit mass, and
suppose, if we swap −→ui with −→uj momentum would be conserved.
We assume that in addition to sij , particles also carry velocity informa-
tion, in a seperate matrix.
And the interaction would be reversible. Now, to incorporate the concept
of a mirror, we have introduce, 2 kinds of particles, call it, soft and hard.
When a soft particle, collides with a soft particle, we swap the −→ui and −→uj .
When a hard particle, collides with a hard particle, we swap the −→ui and −→uj .
Such rules also have the property that the angle before the collision and
that after the collisions are the same. So, if the balls initially collided at



90 degrees to each other, they will bounce back at 90 degrees,as required
by Ed Fredkin and Tofelli’s model.

5.3 An ε Does Make a Difference

When 2 balls collide, what difference is there, between the ball going about
their paths and exchanging momentum during collision? For one simple
difference, the ε. There is one other complicated artifact of exchanging
momentum during collision, that would not matter even if ε is zero or
very large. We will get back to it, later.
Let’s start with Fredkin and Toffeli’s realization of their interaction gate.

.............................................................

.............................................................

...............p.(*).........(*).pq.........................

...................\.........’...............................

....................\.......’(*).p’q.........................

.....................\.....’/................................

......................\...’/.................................

.......................(*)/..................................

.......................(*)\..................................

....................../...’\.................................

...................../.....’\................................

..................../.......’(*).q’p.........................

.................../.........’...............................

...............q.(*)..........(*).pq.........................

.............................................................

.............................................................

This diagram, is a testament to Fredkin and Toffeli’s genius, for one spe-
cific reason: The difference between p′q and pq and between q′p and pq,
is their location in space!! and that is made possible, because of the lat-
tice structure, it is built on. Athough, our setup, does not have a lattice
structure, it does make room for a very small, but finite ε. As long as ε
doesnt vanish, a balls exchanging momentum during collision, will have
spatial trajectories different than balls passing through each other.

5.4 Mirror Mirror On the Ball

When a soft particle, collides with a hard particle, or vise versa, we reflect
the soft particle, away from the hard particle, in the following manner.
Suppose −→ul be velocity of the soft particle and −→uh be velocity of the hard
particle. Then,

−−−→ul new = (−→ul · buh) buh − (−→ul − (−→ul · buh) buh) (40)

= 2 (−→ul · buh) cuh −−→ul (41)

=
2

u2
h

(−→ul · −→uh)−→uh −−→ul (42)

And we leave the heavy particle unchanged. It could be possible that the
heavy particle, is itself a statistical collection of light particles and the



rule does not have to be specifically implemented.
The above rules are not completely unambigious. For example, take the
rule for reflection.

−→u l new = 2
1

u2
h

(−→ul · −→uh)−→uh −−→ul (43)

Now,after the soft ball collides with the hard one, since uh, in its original
form ,is an algebraic expression, as opposed to a number. We can either
keep track of the resultant simplified algebraic expression of 2

u2
h

(−→ul · −→uh)−→uh

or, to keep the expressions neat and tidy, we can just evaluate 2
u2

h
(−→ul · −→uh)

numerically at that instant, and project it onto algebraic expression −→uh.
We choose the neat implementation.
But given those rules, Fredkin’s billard ball interaction model, becomes
a single instance of these rules. Now, using Fredkin and Toffeli’s meth-
ods,one can build complex logic gates from them.



6 A Relativistic Model

For a system to be relativistic, it must meet 2 simple requirements.
Requirement 1 Dot-product must have Minkowski signature, that is

−→
da ·

−→
db = −da0db0 + da1db1 + da2db2 + da3db3 (44)

and
Requirement 2 Space-time seperation remains the same, in any frame of
reference,

−dt2 + dx2 + dy2 + dz2 = −dt′
2

+ dx′
2

+ dy′
2

+ dz′
2

(45)

where dt, dx, dy, dz are measured in one frame and dt′, and dx′, dy′, and
dz′ are from other frames.

6.1 Law of Cosines in Flat Minkowski space

Surprisingly, the law of cosines is also valid, in flat-space relativistic 4d-
systems.

Pick a frame and take space-time vectors −→a ,
−→
b and −→c . Suppose −→a =

(a0, a1, a2, a3) and
−→
b = (b0, b1, b2, b3) and −→c = (a0 − b0, a1 − b1, a2 −

b2, a3 − b3). Now,

a2 = −a2
0 + a2

1 + a2
2 + a2

3 (46)

b2 = −b2
0 + b2

1 + b2
2 + b2

3 (47)

and

c2 = (−→a −
−→
b )2 (48)

= −(a0 − b0)
2 + (a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2 (49)

= −a2
0 − b2

0 + 2a0b0 + a2
1 + b2

1 − 2a1b1 + ... (50)

= a2 + b2 − 2a · b (51)

And more importantly, suppose, a2, b2 and c2 were percomputed using
the Minkowski metric, then a · b computed by taking 1

2

`
a2 + b2 − c2

´
has

the Minkowski metric signature.

1

2

`
a2 + b2 − c2´

= a · b (52)

= −a0b0 + a1b1 + a2b2 + a3b3 (53)

(54)



6.2 Universal Proper Time? No!

Given our model,

d

dτ
sij = bsij · uj (55)

since the equation involves proper time τ , you may be inclined to think,
that we have to pick a particular particle k. And simulate all the other
particles, in that system, by rewriting any RHS term −−→sqm into −−→skm −−→skq.
This must be noted that if sij is frame invariant, it implies that dsij is
frame invariant, and it naturally it follows that bsij ·−→ujdτ is frame invariant.
Given that our system is discrete, naturally it is possible to replace ’−→uj

rules’, with ’
−→
∆j rules’, which has the same unit as distance. Then we can

take

−→
∆j = a−→siq + b−→sgh + c−→sxy + ...or even (56)
−→
∆j = absiq + bbsgh + cbsxy + ... (57)

we can update every particle’s space-time seperation, away from every
other particle, in its own frame.

6.3 Initial Condition

We take, by assumption that sij was initially built using the Minkoswki
metric. However, this requirement has a possibility of emerging for a
discrete system, from random initial conditions.
The proof in the below inductive arguement work at its best, if the system
is simulated by a continous differential equation. However, if the system
was simulated with a discrete difference equation, the dimensionalty or
even the metric signature of the system, does vary slightly over time.

6.4 Induction from n to n+1

If we assume that sij at time step n was built using Minkoswki metric.
Then take the equation

∆skj = bskj ·
−→
∆j (58)

Suppose,
−→
∆j = bsiq, then calculation of

bskj · bsiq =
1

2skjsiq
(s2

kq − s2
ki + s2

ij − s2
qj) (59)

complies with requirement (1), by virtue of skq, ski, sij and sqj having a
Minkowski signature , as discussed in the previous section. However, skj ,
at iteration n+1, given by an increase by ∆skj , computed from the above,
is only approximately Minkoswki compliant.
This is because the term bskj ·∆j is an first-order approximation itself, is
only throughly valid as ∆j approaches 0.
Requirement 2, is naturally statisfied, by this rule, since, we are directly
manipulating invariant space-time seperation sij .



6.5 Visualizing The System in a Particular Ob-
server’s Frame

Every observer(point-like particle,in our case) caries a terad(coordinate
system) with him(it), as illustrated by the following graph, at time proper
instant 0 and 1.

..................................................

.....................|.y(1).......................

.....................|............................

.....................|............................

.....................*------.x(1).................

.................. /’.............................

..........\.y(0)../’z(1)..........................

...........\.....’................................

............\..’..................................

.............*.------.x(0)........................

...........’./....................................

..........’./.....................................

........’../.z(0).................................

......’...........................................

Now, although, we are only operating on distances sij , it would interest-
ing, if we can see, how the other particles are projected onto an another
particles cooridnate system. Although, intially, this may seem like a com-
plicated process, since we are working with scalars sij . This is a fairly
easy task, if one does the homework.

6.6 Embedding a Terad

We start with in observer O’s frame. Take his axis bot, box, boy, and boz
1. Ourbot, box, boy, boz get their own columns and rows in the matrix. We assume

that these are physical rods of unit length, justapoxed to him. Now, we
calculate every other particles j’s space-time seperation, away from these
rods and store them in s(ox,j), s(oy,j) , s(oz,j) , s(ot,j) , respectively.
Throughout the simulation, bot, box, boy, and boz are maintained stationary
to our observer. Now, suppose, we would like to visualize the simulation
of the entire system, in his frame, all we have to do, is take the DOT
product of other particle’s −→soj with −→sot,

−→sox, −→soy, and −→soz,by relying on the
law of cosines.

6.7 Interial Frame

Atleast for the continious case of the equation, a bunch of particles i and
j, are in the same interial frame, if uj − ui and successive collisions, of j
and i with other particles, leave uj − ui leave it algebraically equivalent
to the one, before the collision.

1There are some problems to be addressed later



6.8 Giving It A Spin

It is a commonly accepted fact that spin angular momentum, emerges
when relativity and quantum mechanics are combined. So, if one can
show that one can build Quantum Mechanics, using this system, as one
of its parts, spin would be an emergent property within that system.



7 Conformance To Basic Symmetries

7.1 Parity

The system and its reflection about any plane, would have the same values
of representation, and would be indistingushable from each other,because
distances, do not change, during reflection

7.2 Static Angular Symmetry

Since rotations leave the distance unchanged, the values of the system of
sij and a rotated counterpart would also be indistingushable from other
other.

7.3 Static Translational Symmetry

Since translations leave the distance unchanged, the values of the system
of sij and a translated counterpart, are indistingushable from other other.



8 Skipping Space, Jumping Time and Round-
ing off

That’s all is required for all dynamic symmetries to be violated. If the
system is simulated,using a discretized form of the equation, the system
would not have a perfect invariance of motion.

8.1 Approximate Time Reversal

Ideally speaking, to simulate the system,backward in time, all one has to
do, is just negate all velocities and simulate the particles. If the equation
is simulated, using a perfectly continous system, it would be perfectly
reversible. However, a discretized version of the equation, would only
approximately make the system go back in reverse, in the same way,it
went forward.

8.2 Approximate Translation And Rotation

Given that the system is discrete, any form of translation or rotation, is
only going to be approximate.

8.3 Noether’s Theorem

Nother’s Theorem is statified in the limit, when the discrete system is
good enough to look and behave like a continous one.
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