Chapter 2: Naturally distributions in
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1 Formulating Distributions in circuit theory

Any circuit function, can be writtern,in sums of products as in,
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where Y; is either X; or 1 —X;. Given that X; are input probabilities , each term

[1Y: contributes to the probability. Now, instead of having a large function, it

is possible,to work with it, statistically. Later on, we will go into issues, where

this representation, fails and,what can be done to circumvent to rescue it.
Take [, Yi. Now, if you take the log of it.

log [TY: =D logY; (2)

As said earlier, Y; will either be X; or 1 — X;. And thus, log[], Y; behaves
like a gaussian variable. As with most gaussian phenomenon, things of most
interest are the mean and the standard deviation.

Let (It) be the mean of log of the terms. And let oy; be the standard deviation
of log of the terms. Suppose, y is a probability value contributed by a term,
then probability of finding a term, that supplies y is given by

ply, (It), o1) =

L (_Ug@)—@t») (3)
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The problem with this distribution, is that it assumes that the distribution

is continous and this assumption has problems, of its own, which we will discuss
later. We will fix that assumption, by putting a unit step function in there.



(Y, (i), 016, Ymaz, Ymin) = \/2730”2/ exp <_(10g(y2)0,l2<lt>)> [U(Ymaz = Y) = WYmin —Y)] (4)

Ymaz 1 the value of the term that supplies the maximum individual probabil-
ity and y.min is the value of the term that supplies the least invidual probability.
Suppose, N is the number of terms in the circuit, then,

1
/ dyN -y - p(y, (It), o1, Ymazs Ymin) (5)
0

would give the expected value of the output. Now, suppose, we decide
to rewrite the above integration. Let © = —logy. Then y = exp(—x) and
dx = —dy/y, then exp(—z)dx = —dy. Now,

0 _ 2
/ dxN [— exp(—x)] \/%Ult exp <—(x2oiétt>)) [u(x - - IOg ymaw) - U(QL‘ - —10g ymm)] (6)

Now, with a little bit of rearragement, it becomes,

L C(z—()?
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which is the laplace transform of the gaussian,with s set to 1. We shall generalize
the above expression as follows

/OOO dxN exp(—s - x) . (_@‘W) we=c) ¥
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V2rop 202

/Ooo dxN exp(—z) ) [u(z = =108 Ymaa) — u(z — —10g Ymin)] (7)

for ¢ > 0, it gives

1 (x — (It))?
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Integrating with Maple or Mathematica,we get

N 2 .2 (It 2
2 exp <<lt>s i CTlts) erfe (<>+Jlt8+c> (11)
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/ dxN exp(—s - x)

We define

1 2 2 _ 2
T(s,c,(lt), o) = §exp (—(Zt)s + 0”28 ) erfc (W) (12)
t




2 Properties

Now, NT'(s, ¢, (It), 04) is the probability of output being a 1. Now, N2I'%(s, ¢, (It), o1)
is the probability of the output being a 1, consecutively. Now, N*T'*(s, ¢, (It), o7;)

is the probability that the function is a 1, in k consecutive runs.

It is interesting to see that in the following light. E[C(X)] is the expected value

of the function C(X) with n independent inputs. Then, E[C(X)]E[C(X)], is
equivalent to the expected value of a function with 2-n independent inputs.To

see this explicity, note the following.

log[Jvi=) log¥ (13)
% i

Now, multiplication of the circuit, by itself, constitutes,

2n 2n
log H }/new i= Z 1Og Ynew i (14)

Now, after i goes pass n, the properties of Yy, Y7, etc, repeat. So, the sum
becomes

2n n n
log [ [ Yaewi =) log¥i+ ) logY/ (15)

Now, Y/ is used to denote that, although ,they do have the same properties as
Y, they are statiscally indepedent.

More importantly, the new addition of n-input, changes the function, in such a
way that (It) and c increases two folds, and ¢ also increases two folds.

To see why ¢ increases two folds. Remember that ¢ = log(maxerm, ).

2n n n
max log H Yiewi = max Z log Y; + max Z log Y/ (16)

max of log Y/ has to be atleast as maximum as maxlogY;. Otherwise, it would
not be a maximum, since ;s andY; all have the same properties.
Generally, suppose if we take E[C(X)]*, (It), ¢ and o increase k-fold.

3 (It) and oy

Now, to compute, (It} and oy, assuming independence of terms involving z;
with terms involving z;. We use the following lemmas

Lemma 1 Given, independent variables, y1, y2,..., Yn, we have,

<Z Yi) = Z<yz> (17)
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Var(z Yi) = Z Var(y;) (18)

Using the condition of independence, and the above lemma, we can prove the

t) = Z —w; log(x;) — (1 — w;) log(1 — ;) (19)

where w; is the probability that a term involve x;, as opposed to 1 — x;. Then,
— w;, is the probability that the term involves 1 — z;. Now, to compute the
standard deviation of log of the terms, we just simply take

Z w;log?(w;) + (1 — w;) log*(1 — 2;) = Y _ (—w;log(;) — (1 — w;)log(1 — x))*  (20)

i

Z w; log? (2;) + (1 — w;) log?(1 — ;) — (21)
i w?log?(x;) + (1 — w;)?log?(1 — x;) — 2w;(1 — w;) log(1 — ;) log(;) (22)
i(wi —w})log?(z;) + [(1 —wy) — (1 — wi)’] log*(1 — ) (23)
—Z2wi(1 — w;)log(1 — ;) log(;) (24)

Z(wl — w; )log () + (—w; + 2w; — w; )log (1 =) — 2w; (1 — w;) log(1 — ;) log(25)

%

Z(u) —w)log?(z;) + (w; — w?)log?(1 — z;) — 2w;(1 — w;) log(1 — ;) log(z;) (26)

Z w;( ) (log(z;) — log(1 — x;))* (27)

For a given circuit, w;, remain unchanged, even when input probabilities change.
So, now, if we reformulate, our fault distribution, in language of w;s. It should
be noted that, the above relationship, will still hold, if we replace w; with an
arbitrary a; and 1 — w; with b;. To see this, suppose, we multiply the w; and
1—w; by ¢;, we would have ¢;w; log(x;)+¢;(1—w;) log(1 —z;) and and we woudl
have c2w; (1 —w;) (log(z;) — log(1 — x;))°. So,if a; = cw; and b; = ¢(1 —w;), we
would have

=" a;log(x;) + b; log(1 — ;) (28)

Ult = Zaz i (log(z;) — log(1 — zi))Q (29)



4 Dynamics: Predictables and Unpredictables

The expected value of the log-normal distribution is extremely chaotic. A small
percent of the log-normal distribution, contributes to the majority of the ex-
pected value.

Take
N ols? —(It) + ois+c
—exp | —(t)s + & ) erfc (”) 30
5 o (s + 7 N (30)

Suppose, the weightset changes from time to time. Knowing w;, we can success-
fully estimate oy, and (It), from the formulas, in the above section. However
generally, estimating c is just as bad as finding the actual ¢. In fact, ¢, the
value of the term, that contributes the highest probability, holds the key to the
correct order of the estimate.

4.1 The Unpredictable ’¢’

Suppose, we naively decide to estimate ¢ as by taking

Hmax{l — X, i} (31)

Notice that each time, we take the max{1—a;, z;}, we would either have 1 —z;,
or z;. In the end, we would have a product like (1 —x¢)(z1)z2(1—23)xs2525(1—
x7)(1 — xg). However, for that term, to be the maximum value supplying term,
it must be part of the actual function. It is not required to be part of the
function. And when it is not in it, it is merely a worst possible bound on the
actual maximum, that is part of the function. In general, estimating ¢, could
be an NP-complete process.

5 Fault Detection Analysis

The following analysis is based on an appoarch by Seth-Agarwal-Farat. We
reformulate their method, in terms of vectors that detect those faults , intead
of the faults themselves.

Imagine stuck at faults fi, fa, f3, ... fn in the circuit. Each fault is detected by
a set of vectors. Suppose, we build a circuit F,,(X) , which is 1, when vector X,
detects the fault f,, otherwise zero. Now, each such circuit for different faults
fn has o, , (It,), and N,, parameters. Now, the probability that a f,, is detected
at time instant k, but not before is.

1
/ YN - (1= 9)* 1y - p(y, (Itn), O, Ynma) (32)
0



which is same as saying that one of the vectors, that detects f,,, becomes a lat
time instant k.
Now, the probability that it is detected anytime, upto the time instant k is

1
/O dyNoy 1+ (1 =y)+ (L= 9)* + o+ A=)y p(y, (Itn), o0, ynik33)

_ [ 1-yr-1
= /O dyNn |:1_y_1:| Y- p(y, <ltn>7 On, ynmam) (34)
= o dyNy, [1 - (1 - y)k] p(ya <ltn>7 On, ynmam) (35)
1 k
= /O dyN,, Z(fl)”lkciyip(y, (tn), Tns Yrimaz) (36)
} (37)

which is wonderfully the same as,

k
No Y (1) ECT (i, e, (Itn), o) (38)

i=1

Now, suppose ¢(N, ¢, u, o) is the normalized distribution of N, ¢,u, and o,
we would have

////deCd’udai(_l)HlN‘Z(N,C»M,U)kCiF(i,c,mg) (39)

would give,the probability of faults detected, by iteration k. We shall come back
to this expression later. The above expression, should be seen as a mathematical
device,which can be used,to prove several properities of fault distribution, fault
entropy, etc, in circuits. In fact, based on aprior model of N, ¢ and u, and o
, one can modify ¢(N, ¢, u,o) to prove, properties of such models. We shall, in
the following sections, use such models, to prove, why increasing input entropy,
would increase fault coverage.

One can reformulate this relationship in terms of a’s and b’s, and see a direct
relationship between input probabilities and fault distribution.

k
/ / / / ANdedadd 3 (=1 NG (N, ¢, a, RCLT (7, ¢, 4(X, a,b), o(X, 0, b)) (40)

where

w(X,a,b) = Zalogwi +blog(1l — z;) (41)



and

o?(X,a,b) = Zab (log ; — log(1 — x;))?



