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1 Formulating Distributions in circuit theory

Any circuit function, can be writtern,in sums of products as in,∑
k

∏
i

Yi (1)

where Yi is either Xi or 1−Xi. Given that Xi are input probabilities , each term∏
Yi contributes to the probability. Now, instead of having a large function, it

is possible,to work with it, statistically. Later on, we will go into issues, where
this representation, fails and,what can be done to circumvent to rescue it.

Take
∏

i Yi. Now, if you take the log of it.

log
∏

i

Yi =
∑

i

log Yi (2)

As said earlier, Yi will either be Xi or 1 − Xi. And thus, log
∏

i Yi behaves
like a gaussian variable. As with most gaussian phenomenon, things of most
interest are the mean and the standard deviation.

Let 〈lt〉 be the mean of log of the terms. And let σlt be the standard deviation
of log of the terms. Suppose, y is a probability value contributed by a term,
then probability of finding a term, that supplies y is given by

p(y, 〈lt〉, σlt) =
1√

2πσlty
exp

(
− (log(y)− 〈lt〉)2

2σ2
lt

)
(3)

The problem with this distribution, is that it assumes that the distribution
is continous and this assumption has problems, of its own, which we will discuss
later. We will fix that assumption, by putting a unit step function in there.



p(y, 〈lt〉, σlt, ymax, ymin) =
1√

2πσlty
exp

(
− (log(y)− 〈lt〉)2

2σ2
lt

)
[u(ymax − y)− u(ymin − y)] (4)

ymax is the value of the term that supplies the maximum individual probabil-
ity and ymin is the value of the term that supplies the least invidual probability.
Suppose, N is the number of terms in the circuit, then,

∫ 1

0

dyN · y · p(y, 〈lt〉, σlt, ymax, ymin) (5)

would give the expected value of the output. Now, suppose, we decide
to rewrite the above integration. Let x = − log y. Then y = exp(−x) and
dx = −dy/y, then exp(−x)dx = −dy. Now,

∫ 0

∞
dxN [− exp(−x)]

1√
2πσlt

exp
(
− (x− 〈lt〉)2

2σ2
lt

)
[u(x−− log ymax)− u(x−− log ymin)] (6)

Now, with a little bit of rearragement, it becomes,∫ ∞

0

dxN exp(−x)
1√

2πσlt

exp
(
− (x− 〈lt〉)2

2σ2
lt

)
[u(x−− log ymax) − u(x−− log ymin)] (7)

which is the laplace transform of the gaussian,with s set to 1. We shall generalize
the above expression as follows∫ ∞

0

dxN exp(−s · x)
1√

2πσlt

exp
(
− (x− 〈lt〉)2

2σ2
lt

)
u(x− c) (8)

(9)

for c ≥ 0, it gives∫ ∞

c

dxN exp(−s · x)
1√

2πσlt

exp
(
− (x− 〈lt〉)2

2σ2
lt

)
(10)

Integrating with Maple or Mathematica,we get

N

2
exp

(
−〈lt〉s +

σ2
lts

2

2

)
erfc

(
−〈lt〉+ σ2

lts + c√
2σlt

)
(11)

We define

Γ(s, c, 〈lt〉, σlt) =
1
2

exp
(
−〈lt〉s +

σ2
lts

2

2

)
erfc

(
−〈lt〉 + σ2

lts + c√
2σlt

)
(12)



2 Properties

Now, NΓ(s, c, 〈lt〉, σlt) is the probability of output being a 1. Now, N2Γ2(s, c, 〈lt〉, σlt)
is the probability of the output being a 1, consecutively. Now, NkΓk(s, c, 〈lt〉, σlt)
is the probability that the function is a 1, in k consecutive runs.
It is interesting to see that in the following light. E[C(X)] is the expected value
of the function C(X) with n independent inputs. Then, E[C(X)]E[C(X)], is
equivalent to the expected value of a function with 2-n independent inputs.To
see this explicity, note the following.

log
∏

i

Yi =
∑

i

log Yi (13)

Now, multiplication of the circuit, by itself, constitutes,

log
2n∏
i

Ynew i =
2n∑
i

log Ynew i (14)

Now, after i goes pass n, the properties of Y0, Y1, etc, repeat. So, the sum
becomes

log
2n∏
i

Ynew i =
n∑
i

log Yi +
n∑
i

log Y ′
i (15)

Now, Y ′
i is used to denote that, although ,they do have the same properties as

Yi, they are statiscally indepedent.
More importantly, the new addition of n-input, changes the function, in such a
way that 〈lt〉 and c increases two folds, and σ2

lt also increases two folds.
To see why c increases two folds. Remember that c = log(maxterm).

max log
2n∏
i

Ynew i = max
n∑
i

log Yi + max
n∑
i

log Y ′
i (16)

max of log Y ′
i has to be atleast as maximum as max log Yi. Otherwise, it would

not be a maximum, since Yis andY ′
i all have the same properties.

Generally, suppose if we take E[C(X)]k, 〈lt〉, c and σ2
lt increase k-fold.

3 〈lt〉 and σlt

Now, to compute, 〈lt〉 and σlt, assuming independence of terms involving xi

with terms involving xj . We use the following lemmas

Lemma 1 Given, independent variables, y1, y2,..., yn, we have,

〈
∑

i

yi〉 =
∑

i

〈yi〉 (17)



Var(
∑

i

yi) =
∑

i

Var(yi) (18)

Using the condition of independence, and the above lemma, we can prove the
following

〈lt〉 =
∑

i

−wi log(xi)− (1− wi) log(1 − xi) (19)

where wi is the probability that a term involve xi, as opposed to 1− xi. Then,
1 − wi, is the probability that the term involves 1 − xi. Now, to compute the
standard deviation of log of the terms, we just simply take

σ2
lt =

∑
i

wi log2(xi) + (1 − wi) log2(1− xi)−
∑

i

(−wi log(xi)− (1− wi) log(1 − xi))
2 (20)

=
∑

i

wi log2(xi) + (1− wi) log2(1− xi)− (21)∑
i

w2
i log2(xi) + (1− wi)2 log2(1− xi)− 2wi(1− wi) log(1− xi) log(xi) (22)

=
∑

i

(wi − w2
i ) log2(xi) +

[
(1− wi)− (1− wi)2

]
log2(1− xi) (23)

−2wi(1− wi) log(1 − xi) log(xi) (24)

=
∑

i

(wi − w2
i ) log2(xi) + (−wi + 2wi − w2

i ) log2(1− xi)− 2wi(1− wi) log(1− xi) log(xi)(25)

=
∑

i

(wi − w2
i ) log2(xi) + (wi − w2

i ) log2(1− xi)− 2wi(1− wi) log(1 − xi) log(xi) (26)

=
∑

i

wi(1− wi) (log(xi)− log(1 − xi))
2 (27)

For a given circuit, wi, remain unchanged, even when input probabilities change.
So, now, if we reformulate, our fault distribution, in language of wis. It should
be noted that, the above relationship, will still hold, if we replace wi with an
arbitrary ai and 1 − wi with bi. To see this, suppose, we multiply the wi and
1−wi by ci, we would have ciwi log(xi)+ci(1−wi) log(1−xi) and and we woudl
have c2wi(1−wi) (log(xi)− log(1 − xi))

2. So,if ai = cwi and bi = c(1−wi), we
would have

〈lt〉 =
∑

i

ai log(xi) + bi log(1 − xi) (28)

and

σ2
lt =

∑
i

aibi (log(xi)− log(1 − xi))
2 (29)



4 Dynamics: Predictables and Unpredictables

The expected value of the log-normal distribution is extremely chaotic. A small
percent of the log-normal distribution, contributes to the majority of the ex-
pected value.
Take

N

2
exp

(
−〈lt〉s +

σ2
lts

2

2

)
erfc

(
−〈lt〉+ σ2

lts + c√
2σlt

)
(30)

Suppose, the weightset changes from time to time. Knowing wi, we can success-
fully estimate σlt, and 〈lt〉, from the formulas, in the above section. However
generally, estimating c is just as bad as finding the actual c. In fact, c, the
value of the term, that contributes the highest probability, holds the key to the
correct order of the estimate.

4.1 The Unpredictable ’c’

Suppose, we naively decide to estimate c as by taking∏
i

max{1 − xi, xi} (31)

Notice that each time, we take the max{1−xi, xi}, we would either have 1−xi,
or xi. In the end, we would have a product like (1−x0)(x1)x2(1−x3)x4x5x5(1−
x7)(1− x8). However, for that term, to be the maximum value supplying term,
it must be part of the actual function. It is not required to be part of the
function. And when it is not in it, it is merely a worst possible bound on the
actual maximum, that is part of the function. In general, estimating c, could
be an NP-complete process.

5 Fault Detection Analysis

The following analysis is based on an appoarch by Seth-Agarwal-Farat. We
reformulate their method, in terms of vectors that detect those faults , intead
of the faults themselves.
Imagine stuck at faults f1, f2, f3, ... fn in the circuit. Each fault is detected by
a set of vectors. Suppose, we build a circuit Fn(X) , which is 1, when vector X,
detects the fault fn, otherwise zero. Now, each such circuit for different faults
fn has σn , 〈ltn〉, and Nn parameters. Now, the probability that a fn is detected
at time instant k, but not before is.

∫ 1

0

dyNn · (1− y)k−1y · p(y, 〈ltn〉, σn, ynmax) (32)



which is same as saying that one of the vectors, that detects fn, becomes a 1at
time instant k.

Now, the probability that it is detected anytime, upto the time instant k is

=
∫ 1

0

dyNn

[
1 + (1 − y) + (1 − y)2 + ... + (1− y)k−1

]
y · p(y, 〈ltn〉, σn, ynmax)(33)

=
∫ 1

0

dyNn

[
(1− y)k − 1
1 − y − 1

]
y · p(y, 〈ltn〉, σn, ynmax) (34)

=
∫ 1

0

dyNn

[
1 − (1− y)k

]
p(y, 〈ltn〉, σn, ynmax) (35)

=
∫ 1

0

dyNn

k∑
i=1

(−1)i+1kCiy
ip(y, 〈ltn〉, σn, ynmax) (36)

(37)

which is wonderfully the same as,

Nn

k∑
i=1

(−1)i+1kCiΓ(i, cn, 〈ltn〉, σn) (38)

Now, suppose q(N, c, µ, σ) is the normalized distribution of N , c,µ, and σ,
we would have

∫ ∫ ∫ ∫
dNdcdµdσ

k∑
i=1

(−1)i+1Nq(N, c, µ, σ)kCiΓ(i, c, µ, σ) (39)

would give,the probability of faults detected, by iteration k. We shall come back
to this expression later. The above expression, should be seen as a mathematical
device,which can be used,to prove several properities of fault distribution, fault
entropy, etc, in circuits. In fact, based on aprior model of N , c and µ, and σ
, one can modify q(N, c, µ, σ) to prove, properties of such models. We shall, in
the following sections, use such models, to prove, why increasing input entropy,
would increase fault coverage.
One can reformulate this relationship in terms of a’s and b’s, and see a direct
relationship between input probabilities and fault distribution.

∫ ∫ ∫ ∫
dNdcdadb

k∑
i=1

(−1)i+1Nq′(N, c, a, b)kCiΓ (i, c, µ(X, a, b), σ(X, a, b)) (40)

where

µ(X, a, b) =
∑

i

a log xi + b log(1− xi) (41)



and

σ2(X, a, b) =
∑

i

ab (log xi − log(1 − xi))
2 (42)


