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1 Agarwal Entropy Hypothesis

According to the Agarwal entropy hypothesis, the best weightset X is one, that
is able to maximum output entropy, in other words, a weightset which is able
to set the probability of a output of the circuit to 0.5.

2 Extended Agarwal Entropy Hypothesis

We extend the Agarwal entropy hypothesis, and added an extra condition. Our
approach is based on Agarwal’s orginal reasoning. A best weight X is one, that
is able to both increase both input entropy and output entropy. To understand
our conclusion, suppose Ho is the output entropy and Hi is the input entropy,

Ho

Hi
(1)

is the probability that information, at the input, reaches the output. The better
this metric1 ratio, more paths are able to propogate a fault to the output.
This is true, given that Hi is quantity of information generated and Ho is the
quantity of that information avaliable at the output. Concepts of entropy are
related to reversibility. If you can put in Hi and get an output of Hi,now based
on the output, you can completely get back the input. Now, if you put in Hi

and get an output of Hi/2, based on the information at the output, you cannot
exactly guess back the input. The better the ability to reverse,the better,one is
able to sensitize a fault.
Now,

Hi

n
(2)

is the proportional to the amount of information, generatable at the input. The
better this metric, more number of faults are assessible to changes in the input.

1We use metric,in the sense,that this quantity provides insight into the actual quantity,by
their relationships could be complex.



3 Initial Value

Suppose, one tries to set a circuit’s output to 0.5. And suppose, when the inputs
of the circuits are all set to 0.5, the probability at the output, of the circuit, is
also less than or equal to 0.5, we can do the following

Now, suppose we find a binary input pattern that is able to set the circuit
to 1. Let n, be the number of inputs in the circuit.

We take c = 0.51/n. We replace the zeros of the input pattern with 1 − c
and replace the ones of the input pattern with c. Now, the pattern, by itself,
supplies, a probability value of 0.5. Now, Remember that, the probability at
any of the inputs, will be either c or 1-c.
Now, to understand why the method works, we will try to walk through the
bionimal expansion of (a + b)n.

(a + b)n = nC1a
n + nC1a

n−1b1 + nC2a
n−2b2 + ... + bn (3)

Now, one of the standard ways, to intrepreted that , is that nCk is the number
of times the term akbn−k shows up, in the expansion. Similarly, suppose we
expand (c + 1 − c)n. Now (c + 1 − c)n = 1, is trivally equal to 1. But, notice
the following, about its expansion.

(c + 1− c)n = cn + nC1c
n−1(1− c) + nC2c

n−2(1− c)2 + nC3c
n−3(1− c)3 + ...(4)

= cn + ncn−1(1− c) +
n(n− 1)

2!
cn−2(1− c)2 (5)

+
n(n− 1)(n− 2)

3!
cn−3(1− c)3 + ... (6)

(7)

Now, cn = 0.5 because c = 0.51/n . Now as n gets large, cn−2, cn−3,etc, will
stay close to 0.5.
Take expression nCk(1 − c)k. Take c = 0.51/n. Now, c = e

ln 0.5
n . Now, as n

gets large, we can approximate c, very closely, by only taking the first-order
approximation of exp(x).

Since

c ≈ 1 +
ln 0.5

n
(8)

Now

1− c = − ln 0.5
n

=
ln 2
n

(9)

If n is large enough, we have

nCk(1− c)k =
nk

k!
lnk 2
nk

=
lnk 2
k!

(10)



So, (c + 1− c)n is

= 0.5 + ln 2
1! (0.5) + ln2 2

2! (0.5) + ln3 2
3! 0.5 + .... (11)

What is important about this result is that it says, just about n3 terms, with
our condition on c, contribute to 99.4% of the probabilities. We do not have to
bother, with the rest of the terms because, they can atmost contribute to .6%
of the probability.

4 Effective Approximation

Now, first, it must be noticed that, by picking a vector that contributes to 0.5
of the probability, the vectors that contribute to rest of the higher order terms,
are fixed.
Let K

2n be the average probability,that a variation of the most-contributing vec-
tor, is part of the function.

Now, take the expansion

= 0.5 + ln 2
1! (0.5) + ln2 2

2! (0.5) + ln3 2
3! 0.5 + .... (12)

We are certain about the 0.5. The rest of the higher order terms, come from
vectors, each with a probability of K

2n , of being part of the function.
For the given c, if K

2n converges to a single number, the expansion can be safely
written as,

= 0.5 + K
2n

(
ln 2
1! (0.5) + ln2 2

2! (0.5) + ln3 2
3! 0.5 + ...

)
(13)

The smaller K
2n , the better the approximation. Generally, K

2n is equal to the
E[C](xi = 0.5)

This approximation can be made better, by estimating the effective proba-
bility Keff

2n . To do that, take

Keff

2n
=

E[C][xi = 0.51/n]− 0.5
0.5

(14)

Proof 1 Start by assuming

E[C](xi = 0.51/n) = 0.5 +
Keff

2n

(
ln 2
1!

(0.5) +
ln2 2
2!

(0.5) +
ln3 2
3!

0.5 + ...

)
(15)

Now,

1 = 0.5 +
ln 2
1!

(0.5) +
ln2 2
2!

(0.5) +
ln3 2
3!

0.5 + ... (16)

Substituting that, we would get

E[C](xi = 0.51/n) = 0.5 +
Keff

2n
0.5 (17)



In general, for a given value, d, the expansion can be written as

= d + Keff
2n

(
− ln d

1! + ln2 d
2! − ln3 d

3! + ...
)

d (18)

5 Finding a Solution

Instead of trying to solve a complicated n-dimensonal problem, we can convert
it into a 1-dimensional problem, in the following sense.

Suppose, you find a binary input vector that is able to set the output of the
function to a 1, and suppose the complement of the binary input vector, is able
to set the function to a 0. Now, here’s something interesting and important.
Suppose, if the natural output probability of the circuit is less than 0.5, we
replace the 1s of the vector with c and 0s of the input vector with 1− c.When
c = 1, it will set the output of the function to a 1, and when c = 0, the output
of the function becomes a 0. Then according to the intermediate value theorem,
there is a c in the interval [0,1], that will give you a 0.5. Now, we can make our
initial guess, from the methods described in the above section and improve the
solution, using a nice root finding method.

If you can satisfy the conditions on c, you will always find a solution,using
a good root-finding procedure. To calculate your luck of guessing a solution
correctly, consider the following arguement. Suppose, the 1s and the 0s of the
function are statiscally unrelated. Now, if the probability of being a 1 is φ. The
probabiliy that the function is 0 is 1−φ. If they are statiscally unrelated, then,
φ(1 − φ) is approximately the probability of finding an input vector, that is
able to set the function to 1 and whose complement is able to set the function
to 0. Now, as φ goes to 1 or 0, the probability of guessing a good input-vector
candidate, decreases.

5.1 An Ideal Iterator

A very successful iterator candidate, that can quickly converge onto the correct
c, is

Keff

2n
=

E[C](xi = ct−1)− cn
t−1

1− cn
t−1

(19)

And

ct = n

√√√√∣∣∣∣∣0.5− Keff
2n

1− Keff
2n

∣∣∣∣∣ (20)

Proof 2 Take the expansion

d +
Keff

2n

(
− ln d

1!
+

ln2 d

2!
− ln3 d

3!
+ ...

)
d (21)



Idealy, this must equal E[C](xi = c). Assuming that, we can estimate Keff
2n ,

substituting

1− d =
(
− ln d

1!
+

ln2 d

2!
− ln3 d

3!
+ ...

)
d (22)

Now, assuming that d = cn
t−1

E[C](xi = ct−1) = cn
t−1 +

Keff

2n

(
1− cn

t−1

)
(23)

Rewriting this step, would give the expression for Keff
2n as

Keff

2n
=

E[C](xi = ct−1)− cn
t−1

1− cn
t−1

(24)

Suppose, we our estimate is correct

d +
Keff

2n

(
− ln d

1!
+

ln2 d

2!
− ln3 d

3!
+ ...

)
d (25)

must equal 0.5.
From this step, we can estimate ct , by substituting d = cn

t

cn
t +

Keff

2n
(1− cn

t ) = 0.5 (26)

Rewriting that, would give us

ct = n

√√√√∣∣∣∣∣0.5− Keff
2n

1− Keff
2n

∣∣∣∣∣ (27)

5.2 Conditions and Convergence

It must be noted that, as we try to converge output onto 0.5, input probability
d1/n will shift more and more towards 0.5, and more and more terms will be
able to play a major role in the calculation of the output probability

= d + Keff
2n

(
− ln d

1! + ln2 d
2! − ln3 d

3! + ...
)

d (28)

This is good, since, the closer d1/n towards 0.5, the more vectors, we have to
choose from. The pool of available amount of vectors can be measured by input
entropy.

n∑
i=1

xi log(xi) + (1− xi) log(1− xi) (29)

Convergence of Keff
2n is equivalent to the convergence of c.



6 The Diffractor

Our solution is a diffraction pattern,nontheless. Now, suppose our circuit func-
tion can be represented by C(X). Now, in the above section, we gave details on
converting a pattern to a solution, by replacing 1s of the pattern with c, and
0 of the pattern with 1 − c, when probability of the function being a 1, is less
than 0.5.
Suppose we replace C(X) with C(Y), where yi is 1− xi, when the bit i, of the
pattern is 0, or with xi, when the bit i, of the pattern is 1.
Let’s take the input entropy function Hi(X) be defined as

n∑
i=1

xi log(xi) + (1− xi) log(1− xi) (30)

The function would not change if we replace it, with yi. So, we define, entropy
function Hi(Y) be defined as

n∑
i=1

yi log(yi) + (1− yi) log(1− yi) (31)

Now, the output entropy function Ho(Y), for modified X, be defined as

E[C](Y) log(E[C](Y)) + (1− E[C](Y)) log(1− E[C](Y)) (32)

It should be noted that when the output probability is 0.5, the entropy there is
already maximum.
Now we shall prove that

∂Hi

∂yi
= λ

∂Ho

∂yi
(33)

This step is the lagrange multiplier way, of showing that input and output
entropy are locally simulatenously maximized.
Differentiating Hi with respect to yi, we get

∂Hi

∂yi
= log

(
yi

1− yi

)
(34)

Differentiating Ho with respect to yi, we get

∂Ho

∂yi
= log

(
E[C](Y)

1− E[C](Y)

)
∂E[C]
∂yi

(Y) (35)

By virtue of

log
(

E[C](Y)
1− E[C](Y)

)
= 0 (36)

since E[C](Y) = 0.5 any such input probability vector , will locally maximize
both input and output entropy, when the output is set to 0.5.



In the above section, we utilized the fact that log(0.5/0.5) = 0. It should
specifically be noted that, the result would still hold, even that is not the case.
Take the expression

d +
keff

2n
(1− d) (37)

Now, suppose, we differentiate d with respect to xi, we will get

d
n−1

n +
keff

2n
(1− d

n−1
n ) (38)


