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Abstract – We propose method using the wavelet transform and compaction. Our method outperforms other methods. We improve on methods developed by Giani et al and Guo et al.  We also try to prsent an explanation for our emperical approach
I. introduction

[placeholder]

A. Wavelet Transform

The wavelet transform is a multiscale analysis tool. The wavelet transform has uses in many areas like image processing, image compression, and even analog testing.  Signals can be transformed into the wavelet domain by the fast wavelet transform (FWT) in O (N) time.

 One of its distinguishing features from the FFT and Hadamard transform is that it can highlight local properties of signals. 

B.  Synopsis of The Wavelet Transform Procedure
The following Introduction is taken from ‘http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html’

In discrete signals, frequency is expressed in terms of radians. Accordingly, the sampling frequency of the signal is equal to 2 radians in terms of radial frequency. Therefore, the highest frequency component that exists in a signal will be  radians, if the signal is sampled at Nyquist’s rate (which is twice the maximum frequency that exists in the signal); that is, the Nyquist’s rate corresponds to rad/s in the discrete frequency domain. Therefore using Hz is not appropriate for discrete signals. However, Hz is used whenever it is needed to clarify a discussion, since it is very common to think of frequency in terms of Hz. It should always be remembered that the unit of frequency for discrete time signals is radians.

After passing the signal through a half band lowpass filter, half of the samples can be eliminated according to the Nyquist’s rule, since the signal now has a highest frequency of /2 radians instead of pi radians. Simply discarding every other sample will subsample the signal by two, and the signal will then have half the number of points. The scale of the signal is now doubled. Note that the lowpass filtering removes the high frequency information, but leaves the scale unchanged. Only the subsampling process changes the scale. Resolution, on the other hand, is related to the amount of information in the signal, and therefore, it is affected by the filtering operations. Half band lowpass filtering removes half of the frequencies, which can be interpreted as losing half of the information. Therefore, the resolution is halved after the filtering operation. Note, however, the subsampling operation after filtering does not affect the resolution, since removing half of the spectral components from the signal makes half the number of samples redundant anyway. Half the samples can be discarded without any loss of information. In summary, the lowpass filtering halves the resolution, but leaves the scale unchanged. The signal is then subsampled by 2 since half of the number of samples are redundant. This doubles the scale. 

This procedure can mathematically be expressed as
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Having said that, we now look how the DWT is actually computed: The DWT analyzes the signal at different frequency bands with different resolutions by decomposing the signal into coarse approximation and detail information. DWT employs two sets of functions, called scaling functions and wavelet functions, which are associated with low pass and highpass filters, respectively. The decomposition of the signal into different frequency bands is simply obtained by successive highpass and lowpass filtering of the time domain signal. The original signal x[n] is first passed through a halfband highpass filter g[n] and a lowpass filter h[n]. After the filtering, half of the samples can be eliminated according to the Nyquist’s rule, since the signal now has a highest frequency of  /2 radians instead of pi. The signal can therefore be subsampled by 2, simply by discarding every other sample. This constitutes one level of decomposition and can mathematically be expressed as follows: 
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where yhigh[k] and ylow[k] are the outputs of the highpass and lowpass filters, respectively, after subsampling by 2. 

This decomposition halves the time resolution since only half the number of samples now characterizes the entire signal. However, this operation doubles the frequency resolution, since the frequency band of the signal now spans only half the previous frequency band, effectively reducing the uncertainty in the frequency by half. The above procedure, which is also known as the subband coding, can be repeated for further decomposition. At every level, the filtering and subsampling will result in half the number of samples (and hence half the time resolution) and half the frequency band spanned (and hence double the frequency resolution). Figure 4.1 illustrates this procedure, where x[n] is the original signal to be decomposed, and h[n] and g[n] are lowpass and highpass filters, respectively. The bandwidth of the signal at every level is marked on the figure as "f". 
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Figure 4.1. The Subband Coding Algorithm As an example, suppose that the original signal x[n] has 512 sample points, spanning a frequency band of zero to  rad/s. At the first decomposition level, the signal is passed through the highpass and lowpass filters, followed by subsampling by 2. The output of the highpass filter has 256 points (hence half the time resolution), but it only spans the frequencies /2 to  rad/s (hence double the frequency resolution). These 256 samples constitute the first level of DWT coefficients. The output of the lowpass filter also has 256 samples, but it spans the other half of the frequency band, frequencies from 0 to /2 rad/s. This signal is then passed through the same lowpass and highpass filters for further decomposition. The output of the second lowpass filter followed by subsampling has 128 samples spanning a frequency band of 0 to /4 rad/s, and the output of the second highpass filter followed by subsampling has 128 samples spanning a frequency band of /4 to /2 rad/s. The second highpass filtered signal constitutes the second level of DWT coefficients. This signal has half the time resolution, but twice the frequency resolution of the first level signal. In other words, time resolution has decreased by a factor of 4, and frequency resolution has increased by a factor of 4 compared to the original signal. The lowpass filter output is then filtered once again for further decomposition. This process continues until two samples are left. For this specific example there would be 8 levels of decomposition, each having half the number of samples of the previous level. The DWT of the original signal is then obtained by concatenating all coefficients starting from the last level of decomposition (remaining two samples, in this case). The DWT will then have the same number of coefficients as the original signal.

The frequencies that are most prominent in the original signal will appear as high amplitudes in that region of the DWT signal that includes those particular frequencies. The difference of this transform from the Fourier transform is that the time localization of these frequencies will not be lost. However, the time localization will have a resolution that depends on which level they appear. If the main information of the signal lies in the high frequencies, as happens most often, the time localization of these frequencies will be more precise, since they are characterized by more number of samples. If the main information lies only at very low frequencies, the time localization will not be very precise, since few samples are used to express signal at these frequencies. This procedure in effect offers a good time resolution at high frequencies, and good frequency resolution at low frequencies. Most practical signals encountered are of this type.
II. TeST Generation ALgorithm

The following are the parameters to the test generator. They are scoped under params to make it clear that these are the parameters to the program.

params.mitr = max iterations
params.citr = max cycles before compaction of entire sequence

params.nsize = window size of the filter. Must be a power of 2.

params.frep = number of times to replicate filter

params.npi = number of PIs
params.nsize = size of filter sequence length

params.flst  = fault list to compactor

params.aflst =  fault list of every fault 

params.uflst  = undetected fault list after compaction

params.ctof_range = range of cutoff values to choose from 

params.irlen = initial random vector length

params.rhlen = holding time for initial vectors

params.mhlen  = max holding time

A.  Test Generation Framework
The main test generation procedure test_gen is described below. 

Procedure test_gen

‘Generates test vectors
params = parameters to the program

1.
seq = gen_init_seq(params)

2.
mask[i] = 1 where  0 < i < len(seq)

3.
seq = compact(seq,mask, params)

4.
nsg = 1

5.
j = 1

6.
If mod (j, params.citr) != 0, goto 15

7.
mask [i] = 1 where 0 < i < len(seq)

8.
copy_all_faults(params);

9.
if nsg = 1, goto 12

10.
seq = compact( seq, mask , params);

11.
nsg = 0. goto 20

12.
seq = rcompact(seq, mask, params);

13.
nsg = 1

14.
goto 20

15.
removed[i] = 0 where 0 < i < len(seq)

16.
{seq, mask} = gen_seq( seq , mask)

17.
copy_undetected_faults(params);

18.
seq = flakycompact( seq, mask, params)

19.
nsg = 1

20.
j= j + 1

21.
If j < params.mitr , goto step 6

To begin with, this procedure calls gen_init_seq. Procedure gen_init_seq randomly generates input vectors of length params.irlen.  After generating a random sequence, it is held for a random number of clock cycles between 1 and params.rhlen. Once an initial sequence has an obtained, the sequence is compacted.  This compacted sequence becomes the first approximation to the resultant vector sequence.

Procedure gen_init_seq(params)

‘Generates initial sequence based on params

The test generation procedure repeatedly generates new vector sequences by calling gen_seq and compacts the newer sequences generated using flakycompact procedure.  

While compacting for the newly generated sequence, the fault list of undetected faults is used, by a call to copy_undetected_faults and mask parameter is set to 0 for the sequence from the previous iteration. This way, the compactor is aware that it cannot get rid of sequences from the previous iteration because fault coverage may drop.

Procedure copy_undetected_faults(params)
’Copies undetected faults(params.uflst) into params.flst
Every few iterations, the entire sequence is compacted by compact and rcompact.  This time around, all faults are considered, by a call to copy_all_faults. The mask for all vectors is set to 1, letting the compactor consider the entire sequence for compaction.

Procedure copy_all_faults(params)

‘Copies all faults params.aflst into params.flst

compact and rcompact are both LROR techniques, expect that compact restores vectors from highest detection time to lowest detection time, whereas rcompact randomly considers any detection time order.

B.  New Sequence Generation Procedure
The procedure gen_seq generates new sequences based on the current sequence. 

Procedure gen_seq(seq, removed, params)
’Generates new sequence
seq = sequence from previous iterations
removed = compaction mask for sequence seq
params  = parameters to the program

1.

vec = seq

2.
mask = removed

3.
ctof = gen_ctof( params )

4.
set_fltr_len(seq,params)

5.
j = 0

6.
new_vec = fltr_seq(seq,ctof[p],params);

7.
new_vec = hld_vec(new_vec,params)

8.
new_mask[i] = 1 
  where 0 < i < len(new_vec)

9.
vec = concat(vec,new_vec)  

10.
mask=  concat(mask ,new_mask) 

11.
j  = j +1

12. If  j <  params.frep, goto 6

13. return {vec, mask}

First, in order to accomplish this task, the procedure gen_seq generates cutoff values by a call to gen_ctof.  The cutoff value is a number between 0 and 1. The cutoff value sets the lower limit on the ratio of length of sequence to get rid of. For example a cutoff value of 0.75, tries to get rid of 75% or less parts of the sequence. These cutoff values can fall in a range.  For example, suppose range of cutoffs [0.75, 0.85] is set in params.ctof_range. gen_ctof procedure may generate {0.78, 0.80 , 0.76 , 0.80, …. 0.84} , the length depending on params.frep.

Procedure get_ctof(params)
‘Generates cutoff values, between 0 and 1 based on params
params = parameters to the program

After generating cutoff values, the procedure gen_seq calls set_fltr_len. set_fltr_len length generates the window size of the filter. The parameter modified is params.nsize. During new vector generation, the waveform is broken down into chucks of these window sizes and analyzed. set_fltr_len may use an adaptive window size based on the length of the sequence. For example, suppose the sequence seq has L vectors, it may find the greatest power of 2, less than L/4. For example, suppose L = 200. L/4 is 50. And the greatest power of 2 less than 50 is 32. Depending on params, it may use a constant dyalic window size regardless of the length of seq. 

Procedure set_fltr_len(seq, params)

‘Sets params.nsize depending on len(seq) and params
seq = sequence of vectors

params = parameters to the program

Once some based parameters are generated, the procedure calls fltr_seq to filter the sequence and diffract the sequence. Once the filtered sequence has been obtained, a subsequent call is made to hld_vec to hold vectors for 2 or more iterations. 

hld_vec does holding. Depending on global parameters set in params, it may use different holding procedures.  There are several ways to hold. For example, vectors can be held for constant number of cycles. Vectors can held on a range of cycles.  A random holding time is picked between 0 and params.mhlen and the vector is held for that number of cycles. Sometimes, this method may generate too many vectors, which the compactor may have a hard time getting rid of. Alternate methods of holding include, generating unique random numbers between 0 and sequence length, and holding only those vectors at these indices for one more cycle. The procedure is repeated for params.mhlen iterations.

Procedure hld_vec(vec, params)

‘Holds vectors and returns new sequence

vec = vectors to hold

params = parameters to the program

After the new sequence new_vec to be, is created, the mask for sequence is set to 1, meaning that the compactor can try compacting the newly generated vectors, if possible. 

The new sequences are concatenated with the previously generated sequences and the procedure is repeated for params.nsize.
The procedure gen_seq returns the newly generated sequences and mask.

C.  Wavelet Filtering and Generation Procedure
Procedure fltr_seq is the core part of the test generation procedure.  

Procedure fltr_seq(seq , ctof,params)

‘Creates sequences by filtering and diffraction

seq = sequence of vectors to filter
ctof = cutoff value for filter
params = parameters to the program

1. cseq = pad_seq(2*seq-1, params) 

2. tmp_seq = cseq

2.
a = params.nsize

3.
b = len(seq)/a

4.
j = 0.  

5.
k = 0.

6.
begin = k*a

7.
end = begin +a

8.
pseq  = cseq[begin:end,j] 

9.
let wt_pi = fwt(pseq);

10.
let tmp_pi[i] = 0
 where 0 < i < len(wt_pi) 

11.
let tmp_pi[i] = wt_pi[i] where
  abs(wt_pi[i]) > ctof

12. pseq = (1 +iwt( tmp_pi))/2

13.
tmp_seq[begin:end,j] = diffract(pseq)

14.
k = k + 1

15.
if k < b , goto step 6

16.
j = j + 1.

17.
 If j < params.npi, goto step 5

18.
return tmp_seq[0:len(seq) –1,:]

fltr_seq starts by working on each PI. And breaks the sequence to be analyzed in chunks of size params.nsize.

The procedure is very similar to the Algorithm 1 described by Giani et al in []. The only difference being that after the sequence is filtered, it is diffracted for digitization.

The idea is simply to take chunks of the input bit stream, apply the forward wavelet transform fwt, filter out coefficients smaller than ctof, do an inverse transform on the resultant sequence using iwt and then diffract it. By default we used the Daubachies-4 filter for our wavelet transform.

Procedure pad_seq(seq,params)

‘Pads random vectors to make sequence length a multiple of params.nsize

Whenever the sequence seq length is not a multiple of  params.nsize, random vectors are generated and padded towards the end. This ascertains that the wavelet transform always meets signals in dyallic size of params.nsize. 

Procedure iwt( seq)

‘Does inverse wavelet transforms on seq

Procedure fwt(seq)

‘Does forward wavelet transform on seq

D. Diffraction Procedure
Diffraction is done using the following procedure

Procedure diffract(seq)
’Diffracts sequence and outputs bit stream
seq = stream left after inverse wavelet transform

1.
j = 1

2.
tmp_seq[i] = 0 for 0 < i < len(seq)

3.
tmp_seq[j] = 1 
  where rnd() < seq[j]

4.
if j<len(seq), goto 3

5. return tmp_seq

diffract takes  the real valued sequence left over after iwt, and generated random numbers between 0 and 1, about the same length of the sequence. If the random number at a certain index is less than the value of the sequence at the same index, it is rounded up to a 1, otherwise rounded down to a 0.
III. Compaction ALgorithm

We will describe our compaction algorithms. We have four different compaction algorithms: compact, rcompact, flakycompact and rflakycompact. rflakycompact is never used,  but it is described here anyways. There are subtle but key differences between these procedures. These procedures are modifications of the procedure by Guo et al in []. 

Procedure compact(seq,mask,params)

‘Compacts a sequence

seq = sequence to compact

mask = mask for the sequence

params = parameters to the program

The procedure compact does LROR on vectors in the decreasing order of detect times. When mask[i] is 0, the compactor always keeps the vector seq[i]. The compaction is continued until vector length remains constant for subsequent iterations.

Procedure rcompact(seq,mask,params)

‘Compacts a sequence

seq = sequence to compact

mask = mask for the sequence

params = parameters to the program

The procedure rcompact randomly picks any detection time and tries to restore vectors such that a set of faults at those detection times will be detected. 

rcompact is triggered mainly after the test generation procedure is complete -- that is to say, when no new faults can be detected. Since rcompact incorporates randomness into the procedure, it overcomes local minimum of vector length, left over by compact and drives it down furthur.

Procedure flakycompact(seq,mask,params)

‘Compacts a sequence

seq = sequence to compact

mask = mask for the sequence

params = parameters to the program

The key difference between procedure flakycompact and compact is that, once vectors are restored, flakycompact does not try to check if fault coverage has dropped. On the other hand, if fault coverage drops after restoration, procedure compact will try to put back more vectors, and bring back fault coverage. flakycompact does one pass of restoration and tries to compact in this manner until the vector length remains constant for subsequent iterations. 

There are some key differences between our compaction procedures and the one developed by Guo and al in []. Our procedures can consider more than one fault in parallel. By default, we either consider 64 faults in parallel or 1 fault at a time.

III. DICUSSION OF PARAMETERS

In this section, we will discuss some basic parameters, which worked for different circuits.

A.  Iteration Parameters
By default, the maximum number of iteration for the test generation procedure params.miter is set to 400. This is usually the worst-case limit. On some circuits, letting it run all the way through, detected 1 ore more faults. For example, on circuit s1423, we detected 1417 faults instead of 1416 faults, unlike other test generators, because, we ran it for many iterations. Even though, within few iterations, the test generator was able to detect as much as 1416 faults, the  detection of another fault, took as much as extra 200 or so iterations.

Setting params.miter high also produces shorter vector sequences. Once the test generation procedure saturates on on fault coverage, it will call rcompact, every 10, by default. rcompact compacts the sequences further, resulting in a shorter vector sequence. The compaction achieved by repeated calls to rcompact drops, and eventually saturates, as iterations increase.

On very large circuits, params.miter was no higher than 10. This includes circuits, like s38584 and s38417. The test generation procedure took many days and, at times crashed due to heap corruption. The problem was found to reside in system malloc. Since, heap corruption was caused by memory allocation problems on large circuits, we were not able to run the test generator for more than a week, 

On the circuit s38584, we run for as much as 6 iterations and stopped. Even within a few iterations, we were able to outperform previous test generators. However, it must be noted that our LROR compactor is too slow, for practically large circuits.  

Vector length increase exponentially as iterations go by.

B. Initial Vector Generation Parameters
Usually initially 100 vectors are generated randomly. This method worked for a range of circuits, like s349, s344, s1423, s1196 and s1238. However, we found that this method did poorly on circuits like s400, s382, s38584 and s38417. 

For s400, s382 and several other small circuits, we generated about 10 vectors, and used a random holding time between 0 and 10. It was seen that, doing so, jumpstarted the test generation process and detected more vectors on those circuits.

For large circuit like s38417 needed a large input vector sequence. So, we generated about 1000 vectors and held them 5 or less clock cycles.   

D.  Cut-off Parameters
We found that cut-off value of the filter, params.ctof_range is better, if it in the range [0.65,0.95], on any circuit. We tried range changes in multiples of .05. By default, on circuits s1423, s1196 and s1238, we used a constant .85 cutoff value.  On others, we used a range of cut off values, usually between [0.80, 0.95].  Circuits like s1494, s1488 has similar response, as long as any range of cut-off values fell between [0.80, 0.95].   

E. Filter Replication and Holding Parameters
On most circuits, params.frep was set to 5 and params.mhlen to 2. We found that params.mhlen of 2 was too small for circuits like s400, s382, and larger circuits like s38417. On smaller circuits like s400, s382, and larger circuits like s38417 we used a params.mhlen of 5. We compensated for the potential for increase in vector length by reducing params.frep on s38417.  

F. Wavelet parameters
Initially we used a window size of 128. Later on, we found that an adaptive window size algorithm was better.  On all circuits, we used the Daubechies-4 Wavelet filter. Daubechies-4 filter was found to a better job than Haar filter.
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where If is the fault current at the terminals of an unloaded wye connected generator, for a line-to-line fault using positive, negative and zero sequence voltages, currents, and impedances.
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Fig. 1. Magnetization as a function of applied field. Note how the caption is centred in the column 
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	1239
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	244
	1239
	224
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	s1238
	1283
	229
	1283
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	1283
	255
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	235
	1355

	s1423
	1417
	951
	1417
	991
	1416
	927
	1416
	1049
	1515

	s5378
	3643
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	3639
	741
	3643
	734
	3643
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	s526
	454
	993
	454
	1088
	-
	--
	454
	1557
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	s713
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	75
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	89
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	581

	s832
	818
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	818
	712
	-
	-
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	-
	870

	s641
	404
	95
	404
	101
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	-
	-
	467

	s38584
	8574
	2291
	7273
	3003
	-
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	11
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	9
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	-
	-
	-
	1079

	s820
	814
	544
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	437
	-
	-
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	-
	850
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	1453
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	1453
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	1453
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	1506

	s1488
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	338
	1444
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	1444
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	1444
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	-
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	350

	s382
	364
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	364
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	314
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	-
	-
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	1222
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