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Abstract

With this paper, we aim to establish that one can infact induce time-
based correations. However, we do not claim that such time-induced cor-
relations can violate CHSH or equivalent inequality.

1 Introduction

There has been a lot of activity in computer modelled simulations of EPR-B
experiments, due to a number of recent papers from Accadi, Gill and all. Dr.
Gill, had setup a 5000 euro bet against Accardi should he succeed in creating a
local model of a simulation, that violates the bell inequality.
Here’s a bit of the details. There are 5 computers O, A , B , and X , Y.

• Computer O, is the generator of the ’EPR’ correlated source.

• Computer X,and Y, are detectors, that produce a measurement. Each
detector can be in one of 2 orientations, let’s say, orientation 1 or

• The detector angles are input by computer A and B.

• Dr. Gill, controls computers A and B. He agrees to send equiprobable
request for direction combinations of filter orientations

• Computer X and Y, should not communicate about each other’s detector
orientations, on each trail.

• Computer X and Y, output a binary output: 0 or 1 or -1 or 1, ie, either
the particle was detected in spin up state or spin-down state. They cannot
output any other value.

After about 15000, he will test to see if they will violate CHSH inequality, which
is another partical form of Bell inequality.



2 One way to Correlation

The following method WILL NOT violate CHSH inequality, but it will produce
correlation, similar to the quantum mechanical prediction. QM predicts that
the correlation between the 2 detectors will be − cos θdetector.
Now, athough we dont have choice over detector orientations, we can still induce
correlations using statistical trick, which i call ’othorgonal attack.’
The idea follows from supposing the existance of othornormal real discrete-time
signals, p(n) and q(n), which have the following properties

〈p(n)q(n)〉 = 0 (1)
〈p2(n)〉 = 1 (2)
〈q2(n)〉 = 1 (3)

A simple case of p(n) and q(n), that have the above properites, are haar wavelets
[-1 -1 1 1] , [ 1 -1 1 -1]. One can form waveforms really long waveforms p(n),
q(n) by repeating [-1 -1 1 1] , [ 1 -1 1 -1], as in

p(n) = [ −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1...]
q(n) = [ 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1...] (4)

Take a signal m1(n), and m2(n) such that

m1(n) = a [sinφ p(n) + cos φ q(n)] (5)
m2(n) = b [sin θ p(n) + cos θ q(n)] (6)

where a, b, sinφ ,cos φ, sin θ , cosθ are constant cofficients
Suppose we takee 〈m1(n)m2(n)〉,

〈m1(n)m2(n)〉 = 〈a (sinφp(n) + cos φq(n)) b (sin θp(n) + cos θq(n))〉 (7)
= ab〈sinφ sin θp2(n) + cos φ sin θq(n)p(n) (8)

+ cos θ sinφq(n)p(n) + cos φ cos θq2(n)〉 (9)
= ab[sinφ sin θ〈p2(n)〉+ cos φ sin θ〈q(n)p(n)〉+ (10)

cos θ sinφ〈q(n)p(n)〉+ cos φ cos θ〈q2(n)〉] (11)

substituting values for 〈p2(n)〉, 〈q2(n)〉 , 〈q(n)p(n)〉 , etc, we get,

= ab sinφ sin θ + ab cos φ cos θ (12)
= ab cos(φ− θ) (13)

3 Generating Measurement

METHOD for generating a measurement on the EPR correlated pair locally at
computer X and Y. Now, at computer X. We generate 2 streams of measure-
ments, one for filter orientation 1, another for filter orientation 2.



we generate stream X1,

X1(n) = rand < a (sin θx1p(n) + cos θx1q(n)) (14)

we generate stream X2,

X2(n) = rand < a (sin θx2p(n) + cos θx2q(n)) (15)

rand produces a random number between -1 and 1. a < b return 1, if a ≤ b,
and returns -1 otherwise where n is the trail number.
X1(n) and X2(n) are polar binary streams, as per Dr. Gill’s request. But to
make the othorgonal attack work, the absolute value of the cofficients of p(n)
and q(n) must add to less than 1. However, | sin θ| + | cos θ| ≥ 1. If one scales
it down by adjusting a, to make it work , one no longer will be able to violate
bell-inequality.
Now, at computer, Y, we generate, we generate stream Y1,

Y1(n) = − [rand < b (sin θx1p(n) + cos θx1q(n))] (16)

we generate stream Y2,

Y2(n) = − [rand < b (sin θx2p(n) + cos θx2q(n))] (17)

When Dr. Gill, sends requests to computer X or Y, to produce, a measure-
ment for his choice of filter orientation, we return local ’measurement’ made by
the filter.

4 Bell’s Inequality: Another form of Shannon’s
Coding Theorem?

4.1 Draft

Take the Accardi challenge by Dr. Gill. The problem equivalently, is whether
detector X can guess and compenstate for the setting of detector Y without
actually knowing actual setting at detector Y. This, in general is impossible
according to Shannon-Coding Theorem.

4.2 Important Things to Notice

Each detector orientation is choosen independently at X and Y.
Choosing orientation 1 at X is mutually exclusively to orientation 2. So, we can
use a single bit or less to encode the state of the oritentation at detector X.
Let’s call the entropy here Hgx.
Choosing orientation 1 at Y is mutually exclusively to orientation 2. So, we can
use a single bit or less to encode the state of the orientation at detector Y. Let’s
call the entropy here Hgy.
Dr. Gill has Hgx + Hgy amount of information he can control to his desire.



Let’s call the bit stream generated at orientation 1 at X X1, orientation 2 at X
X2, orientation 1 at Y Y1, orientation 2 at Y Y2. Now, there are four ways this
information can paired, at time step n. X1(n) can be paired against Y1(n) or
Y2(n), X2(n) cae be paired against Y1(n) or Y2(n) and viseversa.
The detectors do have some prior knowledge. For example, for one, if he writes
into X1, he definitely is not writing into X2. Similarly, if he is writing into Y1,
he definitely is not writing into Y2. However, they do not know the correct bit
stream he is writing this information into.
Suppose detector X generates a measurement based on Dr. Gill’s orientation ,
it still has no way of controlling Dr. Gill’s orientation. More importantly, the
detector has no way of controlling which bit stream X1 and X2, he is writing
this result into. The same could be told of detector Y and the bit streams Y1

and Y2 he generates at Y.
You have to make some key notices of the above statements. By controlling
which bit stream detector output is written into, he can induce Hgx at detector
X and Hgy at detector Y. The detectors have no say in this matter.

Take the following senarios.
Dr. Gill provides detector X with orientation 1. He generates a bit. And now,
detector X is not aware of anything at detector Y. Now, detector X does not
know if the bit stream generated at X1, is going to be paired against either
Y1 or Y2. Detector X does not have any information channel that is going to
tell if Y1 or Y2 was used for the orientation. Shannon’s Coding Theory tells us
that information content of a channel cannot exceed the limit of the channel.
Thus, there is always an average Hgy-bit uncertainty, at X. We can similarly
enumerate through all the other posibilities of detector orientations.

Even if the detectors were aware of the previous states of detector orienta-
tions, they will never be able to play catch up, because Dr. Gill is the generating
the filter orientations and inducing information content Hgx and Hgy into the
system, at every instant. That would mean that suppose the detectors decided
to make up, for the uncertainty in their previous runs, they still miss the uncer-
tainty of information, he introduces in the new iteration. Even if the detectors
were able to make up for the uncertainty of information, from the knowledge of
the previous iterations, they still will always be one iteration behind, at worst.
And thus, will never be able to make up that Hgx-bit or Hgy-bit.


