
Chapter 6: Formal Hardware Verification

December 23, 2003

Abstract

In this chapter, we try to generalize the Cutting Algorithm, devel-
oped by Dr. Jacob Savir and make it very accurate. Our methods are
not gaurrented to give the exact result, however, it can provide the best
estimate on the bounds. In this chapter, we also introduce simple proba-
bilitic Implication algorithm, that is a variation of our generalized Cutting
Algorithm.

1 Restating the Formal Verification Problem

Given circuits C1(X) and C2(X), suppose, for some given weightset X, the
lower bound of E[C′

1C2](X) [or E[C1C′
2](X)] is not 0, then the circuits are not

equivalent.

Proof. The statement follows from the fact that if C1 is functionally equivalent
to C2, ANDing of C1 with the NOT of C2 is equivalent to ANDing C1 with
the NOT of C1 itself. Thus, for any weightset, it must reduce to 0. Any lower
bound higher than 0, indicates that this condition is definitely not met and thus
establishes itself as another criteria for doing, Formal Hardware Verification.

2 Global Extremum Theorems

Lemma 1.

min E[C](X) ≤ mean E[C](X) ≤ max E[C](X) (1)

Theorem 1. min E[C](X) can always be computed as a function of the bounds
x1l, x1r, x2l, x2r, ... , xnl, xnr,

Proof. Suppose, we assume that Emin = min E[C](X) is not a function of the
bounds, in variable xi. We do not make any assumptions of the other variables.
Now,

Emin = E(xi = 0) + xi
∂Emin

∂xi
(2)

If ∂Emin
∂xi

> 0, but xi is not xil, it is not the global minimum, since if xi was
replaced by xil,it would be even lesser. If ∂Emin

∂xi
< 0, but xi is not xir, it is not

the global minimum, since if xi was replaced by xir, the function would be even
lesser.
If ∂Emin

∂xi
= 0, the minimal output can be a function of any xi. Since, we are

proving that output bound can always be computed as a function xir, xil, as
opposed to, proving that the output bound, is always a function of xir, xil, our
proof holds, for the general case.

Theorem 2. max E[C](X) can always be computed as a function of the bounds
x1l , x1r, x2l, x2r, ... , xnl, xnr.

Proof. The proof is similar to the above, except with conditions reversed.

3 Bounds of Functions

Lemma 2. Any circuit function can be writtern as

C(Y) = a0 +
∑

i

biyj +
∑
i 6=j

cijyiyj +
∑

i 6=j 6=k

dijkyiyjyk + ... (3)

where a0, bi, cij , dijk,etc can be either -1,0 or 1.

To compute the expectation value of the function, for weightset X. We just
take

E[C](X) = a0 +
∑

i

bixj +
∑
i 6=j

cijxixj +
∑

i 6=j 6=k

dijkxixjxk + ... (4)

The trival proof follows from Parker-Mcklucsky alegbra.
Notice, that suppose, if we replace xi = xil+xir

2 . Then, take

E[C](X) = a0 +
∑

i

bi
xil + xir

2
+

∑
i 6=j

cij
xil + xir

2
xjl + xjr

2
+ (5)

∑
i 6=j 6=k

dijk
xil + xir

2
xjl + xjr

2
xkl + xkr

2
+ ... (6)

Directly, from that expression, we can see that the expected value of average
input bound probability is also average of circuit probabilities computed by
taking all permutation of input probability bounds.

4 Lemmas of Distributions

Lemma 3. Given that a log-normal distribution of variable y, such that |max log(y)−
min log(y)| < δ, the distribution is also approximately gaussian.

Proof. Take

p(y, 〈lt〉, σlt) =
1√

2πσlty
exp

(
− (log(y)− 〈lt〉)2

2σ2
lt

)
(7)

Pick a log(c) in the interval [min log y, max log : y]. Now ,

log(c + y) = log(c) + log(1 + y/c) (8)
≈ log(c) + y/c (9)

The expected value, of log(c + y) is about log(c) + 〈y〉
c . And variance is about

1
c2

(
〈y2〉 − 〈y〉2

)
. And 1

c+y is about 1
c (1− y/c).

Lemma 4. Distribution of E[C](X) evaluated with each permutation of the
input probability bounds is gaussian towards the center and log-normal asym-
topically towards the ends.

5 Algorithm for Probabilistic ATG

Suppose we want to find a binary input vector X that sets the circuit C(X)
to 1. The following algorithm will find a solution,if one exists. It is terribly
inefficient, for problems, where X could be guessed easily. However, when X is
not easy to guess, the algorithm, combined with PREDICT, is most likely, to
be a faster method for finding a solution.

5.1 The Algorithm

Set xi = 0.5.If E[C](X|xi = 1) > E[C](X|xi = 0), set xi = 1, else xi = 0. And
Move onto the next xi.

Proof. For any X, if E[C](X) > 0, then, weightset X will contain atleast one
binary vector, the sets C to 1.
Remember that every other variable is fixed, except for xi. When E[C](X|xi =
1) > E[C](X|xi = 0) implies that there are more 1s, if xi = 1, than when xi = 0.
This follows from the fact that E[C](X|xi = a) is the probability of getting 1,
at the output, given that xi = a.
Setting xi = 1, is guaranteed, to raise the probability of finding a 1. On the
other hand, When E[C](X|xi = 1) < E[C](X|xi = 0), implies that there are
more 1s, if xi = 0. Setting xi = 0, is guaranteed, to raise the probability of
finding a 1.

The method can be used to set C(X) to 0, as follows. Set xi = 0.5.If
E[C](X|xi = 1) < E[C](X|xi = 0), set xi = 1, else xi = 0. And Move onto the
next xi. The proof is similar to the above.

6 Generalized Approximate Cutting Algorithm

In this section, we try to extend the Cutting Algorithm of Dr. Jacob Savir. We
will later on, show that Dr. Jacob Savir’s rules of the Cutting Algorithm, are
just instances of our generalized algorithm.
Suppose [x1l, x1r] , [x2l, x2r] ... [xnl, xnr] are uncertainty bounds in the inputs,
and suppose function E[C](Y) is exactly calculatable for an aribitarty weight
set [y1, y2, ..., yn] ,the uncertainty bounds in the output of the function can be
estimated very accurately by the following procedure.

Take the input set [x1l, x1r] , [x2l, x2r],all the way, upto [xnl, xnr] and find
the average of each bound,

xi =
xil + xir

2
(10)

And calculate

m = E[C](X) (11)

Now, change one xi to either xil or xir without changing the others. And
calculate

mir = E[C](X|xi = xir) (12)

and

mil = E[C](X|xi = xil) (13)

To find the ’near global’ minimum, take the least miy and set the xi to xiy.
That is to say that if the least miy was m1r, then xi = x1r. And recurse.
To find the ’near global’ maximum, take the greatest miy and set the xi to xiy,
without changing the other . That is to say that if the greatest miy was m2l,
then xi = x2l. And recurse.

Corollary 1. Given the gaussian assumption, then the least mix. must be
atleast less than half of the the permutations, at atmost greater than or equal
to the greatest value of the least 1/4th of the total population. Call the cut off
value c.

Proof. Evidently since mix is less than mi, from the gaussian assumption, mix

is less than half of those permutations.
To prove the second part, suppose, we assume to the contrary that mix is
less than c. The number of permutations used in computing mix is half of the

permutation used for calculating mi. And the number of values less than mix in
calculating is, half of that population. So, there are already 1/4th of the terms
below mix. But by suppostition, mix is less than the c. From the gaussian
assumption, there must be terms between the cut off and mix. If that were
true, that the cutoff isnt really, at 1/4 of the population, but contains more
terms. Since, this is a contradiction, mix has to lie above the cutoff.

Proof remains the same for each successive step.

Corollary 2. Now, suppose, the gaussian at each step has the mean and stan-
dard deviation parameters uj and σj, the number of implicit comparision,performed
by this procedure at this step is atleast

2n · 0.5jΦ
(

uj − uj−1

σj

)
(14)

Proof. This can be seen, in the following light. 2n · 0.5j is the amount of the
population, the procedure acts on, each time. Every time, we succeed, in find-
ing an mix, we have implicity compared values of the population between the
previous mean uj−1 and the current one, uj . From the gaussian assumption,
we get the size, of the population inbetween, to be

Φ
(

uj − uj−1

σj

)
(15)

In the end, the procedure, implicitly does about

2n · 0.5 +
∑

j

2n · 0.5jΦ
(

uj − uj−1

σj

)
(16)

comparisions,at least.
Something important to note is that, the number of comparision will never
exceed 2n. It is surprising to note that, for a circuit with 32-input, procedure,
implicity compares billions of permutations, in O(n2) time. One thing to note,is
that, athough it does compare most of them, in short swipes, it doesnt compare
them all.
However, the number of comparisions, is much greater than that. The total
number of compared values, between the final and the intial state is 0.5 · 2n +
2nΦ

(
un−u0

σ0

)
.

7 Cutting Formulas

Here are some proof for some basic gates.

7.1 AND gate

E[C](X) = x1x2x3 · · ·xn (17)

without any difficulty, u must see that xi for the lower bound

xi = xil (18)

because x1x2 · · ·xil · · ·xn is less than x1x2 · · ·xir · · ·xn. and for the upper
bound,

xi = xir (19)

7.2 OR gate

E[C](X) = 1− (1− x1)(1− x2) · · · (1− xn) (20)

Now 1−(1−x1) · · · (1−xil) · · · (1−xn) < 1−(1−x1) · · · (1−xir) · · · (1−xn),
so the lower bound is given by

xi = xil (21)

And the upper bound is given by

xi = xir (22)

7.3 NOT gate

E[C](X) = 1− x (23)

Now, 1−xr is the left bound and 1−xl is the right bound given by our procedure.

8 Algorithm Complexity Hypothesis

Let’s say we like to solve a boolean satisfiability E[C](x1, x2, ..., xn) = c where
xn is binary. Let’s say that, you use a probabilistic method, i.e, we randomly
start inside the space [0,1]x[0,1]....[0,1] and try to converge on to a solution.

Suppose the probability of naturally guessing the solution is really small, then
nature of problem having P or NP-complete order depends on this one condi-
tion. For a moment, let us denote the exact E[C](y1, y2, ..., yn) by p. For any
given real y1,y2...,yn, if we can calculate the E′[C](y1, y2, ..., yn) approximately,
in O(Nk) always such that

E′[C](y1, y2, ..., yn) = p · (1± e) (24)

where e ≤ 1/2, then that problem is no longer NP complete, and can always be
solved in P time. If the error is always additive,

E′[C](y1, y2, ..., yn) = p± e (25)

Our hypthosis, does not apply to that problem.
Note: This is a propostion, without proof.
On the other hand, for any given y1,y2...,yn, if we can calculate the E′[C](y1, y2, ..., yn)

approximately, in O(Nk), on average such that

E′[C](y1, y2, ..., yn) = p · (1± e) (26)

where e ≤ 1/2, then that problem can on average be solved in P-time.If the
error is additive, on average,

E′[C](y1, y2, ..., y3) = p± e (27)

Our hypthosis, does not apply to that problem.

8.1 Uses

We speculate that the result could be very useful in proving P or NP-completeness
of factoring algorithms. The factoring problem is a boolean statisfability prob-
lem in disguise. Here, we have a multipler with (3/2)n-inputs 1 and n-outputs
2. Now we would like to find input values(factors) that generate the number
that requires factoring, at the output. The way we do it, is by simulatenously
requiring all output bits to match the bits of the result. Now, if we can, on aver-
age, interpolate the functional space of the multiplier in O(Nk), then factoring
,on average, could be done in polynomial time.

1one n-bit multiplicand and another n/2 -bit multiplicand
2the n-bit number that requires factoring

