Fermat's Last Theorem: In Defense of Fermat

January 23, 2004

Abstract

To point of this paper, is to look at Fermat's defense, if he really did have a proof, what it might involve and look like. At his disposable were Calculus, Binomial theorem and rudimentary number theory.

1 Fermat's Last Theorem

According to Fermat's Last Theorem, equation of the form

$$
\begin{equation*}
X^{n}+Y^{n}=Z^{n} \tag{1}
\end{equation*}
$$

cannot have distinct integer solutions for X, Y and Z , for $n>2$.
Proof. Differentiating the above expression by some variable t, we get

$$
\begin{equation*}
n X^{n-1} \frac{d X}{d t}+n Y^{n-1} \frac{d Y}{d t}=n Z^{n-1} \frac{d Z}{d t} \tag{2}
\end{equation*}
$$

One has to notice that the above expression would not make a difference, if we replace $n \frac{d X}{d t}, n \frac{d Y}{d t}$ and $n \frac{d Z}{d t}$ by labels $a^{\prime}, b^{\prime}, c^{\prime}$.

$$
\begin{equation*}
a^{\prime} X^{n-1}+b^{\prime} Y^{n-1}=c^{\prime} Z^{n-1} \tag{3}
\end{equation*}
$$

Normalizing the equation by c^{\prime}, would yeild,

$$
\begin{equation*}
a X^{n-1}+b Y^{n-1}=Z^{n-1} \tag{4}
\end{equation*}
$$

Suppose, we differentiate the system,

$$
\begin{equation*}
a^{\prime} X^{n-1}+b^{\prime} Y^{n-1}=c^{\prime} Z^{n-1} \tag{5}
\end{equation*}
$$

again by another variable t^{\prime}.

$$
\begin{equation*}
\frac{d a^{\prime}}{d t^{\prime}} X^{n-1}+a^{\prime}(n-1) X^{n-2} \frac{d X}{d t^{\prime}}+\frac{d b^{\prime}}{d t^{\prime}} Y^{n-1}+b^{\prime}(n-1) Y^{n-2} \frac{d Y}{d t^{\prime}}=\frac{d c^{\prime}}{d t^{\prime}} Z^{n-1}+c^{\prime}(n-1) Z^{n-2} \frac{d Z}{d t^{\prime}} \tag{6}
\end{equation*}
$$

Replacing $\frac{d a^{\prime}}{d t^{\prime}},(n-1) \frac{d X}{d t^{\prime}}$, and others with unknowns d, e, f, g, m and n , we would end up with

$$
\begin{equation*}
d X^{n-1}+e X^{n-2}+f Y^{n-1}+g Y^{n-2}=m Z^{n-1}+n Z^{n-2} \tag{7}
\end{equation*}
$$

Set $\omega_{x}=\frac{X}{Z}$ and $\omega_{y}=\frac{Y}{Z}$. Now, FLT becomes

$$
\begin{array}{r}
\omega_{x}^{n}+\omega_{y}^{n}=1 \\
a \omega_{x}^{n-1}+b \omega_{y}^{n-1}=1 \tag{9}
\end{array}
$$

Rewriting the above statements, we end up with,

$$
\begin{array}{r}
\omega_{x}^{n}=1-\omega_{y}^{n} \\
a \omega_{x}^{n-1}=1-b \omega_{y}^{n-1} \tag{11}
\end{array}
$$

Divinding one expression by another we get,

$$
\begin{equation*}
\omega_{x} / a=\frac{1-\omega_{y}^{n}}{1-b \omega_{y}^{n-1}} \tag{12}
\end{equation*}
$$

Rewriting the above expression, we have

$$
\begin{equation*}
\omega_{x}=a \frac{1-\omega_{y}^{n}}{1-b \omega_{y}^{n-1}} \tag{13}
\end{equation*}
$$

Substituing the above expression into $\omega_{x}^{n}+\omega_{y}^{n}=1$.

$$
\begin{align*}
& a^{n} \frac{\left(1-\omega_{y}^{n}\right)^{n}}{\left(1-b \omega_{y}^{n-1}\right)^{n}}=1-\omega_{y}^{n} \tag{14}\\
& a^{n}\left(1-\omega_{y}^{n}\right)^{n-1}=\left(1-b \omega_{y}^{n-1}\right)^{n} \tag{15}
\end{align*}
$$

If one can solve the above polynomial equation, one can obtain the expression for ω_{y}. Similarly, we can obtain a polynomial equation e for ω_{x},

$$
\begin{equation*}
b^{n}\left(1-\omega_{x}^{n}\right)^{n-1}=\left(1-a \omega_{x}^{n-1}\right)^{n} \tag{16}
\end{equation*}
$$

Now, subtituting $X=\omega_{x} Z$, and $Y=\omega_{y} Z$,

$$
\begin{array}{r}
d \omega_{x}^{n-1} Z^{n-1}+e \omega_{x}^{n-2} Z^{n-2}+f \omega_{y}^{n-1} Z^{n-1}+g \omega_{y}^{n-2} Z^{n-2}=m Z^{n-1}+n Z^{n-2}(17) \\
d \omega_{x}^{n-1} Z+e \omega_{x}^{n-2}+f \omega_{y}^{n-1} Z+g \omega_{y}^{n-2}=m Z+n(18) \\
{\left[e \omega_{x}^{n-2}+g \omega_{y}^{n-2}-n\right]=\left[m-d \omega_{x}^{n-1}-f \omega_{y}^{n-1}\right] Z(19)}
\end{array}
$$

It yields an expression of Z.

$$
\begin{equation*}
Z=\frac{e \omega_{x}^{n-2}+g \omega_{y}^{n-2}-n}{m-d \omega_{x}^{n-1}-f \omega_{y}^{n-1}} \tag{20}
\end{equation*}
$$

We can get

$$
\begin{align*}
Y & =\omega_{y} Z \tag{21}\\
Y & =\omega_{y} \frac{e \omega_{x}^{n-2}+g \omega_{y}^{n-2}-n}{m-d \omega_{x}^{n-1}-f \omega_{y}^{n-1}} \tag{22}\\
X & =\omega_{x} Z \tag{23}\\
X & =\omega_{x} \frac{e \omega_{x}^{n-2}+g \omega_{y}^{n-2}-n}{m-d \omega_{x}^{n-1}-f \omega_{y}^{n-1}} \tag{24}
\end{align*}
$$

Proving FLT, would be equivalent to proving that above expressions for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ cannot have integer solutions.[will complete later].

