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Abstract

In this chapter, we lay the foundation for metric theory, both for com-
binational circuits and sequential circuits. We build our formulation and
understanding, based on the mathematical gadgets, we built in the previ-
ous chapters. Our formulation is not complete, and is still open. We do
not have an optimal iterator or solution finder, that can use the math-
ematical tools, developed in this chapter, to speed up test generation.
However, we have an underlying set of equations, that can be used by
such a tool, to improve testing.

1 The Metric theory

Suppose, we are given a circuit function C[X] and we are trying to optimize
fault-coverage. Instead of optimizing fault-coverage, we may be, minimizing,
measurable metrics, like distance at which a fault is unable to propogate.

Now, suppose, we are given a combinational circuit. The circuit is memo-
ryless and static. Now, to manipulate the circuit, we supply it with an input
vector and run it. Now, suppose, if we get the same metric value, independent
of the time the input vector, is presented to the circuit, then the following is
true of that circuit.
Note: It is important to note this point that the metric is memoryless. Sup-
pose, the metric, does depend on the sequence, of input vectors, our following
arguements are valid, over the local time frame.

Definition 1

M(X) =
2n∑
i

Mi

∏
j

Yij (1)

where
∏

i Yi is the term the produces the effect Mi.

For example, for an OR gate, we could have

M01x0(1 − x1) + +M10(1 − x0)x1 + M11x0x1 (2)



So, when the input vector, is 01, we get the output metric, M01. Now, one can
prove that given a function M(X), and the pdf(xi), or the input probabilities,
then the statistical average of the metric is given as[∏

i

∫ ∞

−∞
dxipdf(xi)

]
M(X) (3)

Now, since the pdf(xi) = (1 − pi)δ(1 − xi) + piδ(xi), Parker muclusky rules
p2

i = pi and (1 − pi)pi = 0 all apply. So, what becomes, true,is that the second
order, third order, 4th order, etc, effects of an input xi are not present. So, the
metric function can be written as

M(X) = m0 +
∑

i

mixi +
∑
i 6=j

mijxixj + ... (4)

Given that, the metric function can also be written as

M(X) = M(xi = 0) + xi
∂M
∂xi

(X) (5)

From the fact, that second order effects are not present, one can deduce that xi

and ∂M
∂xi

(X) behavely indpendently,for any metric.
Take correlation function Cor(M(X), xi)

Corr(M, xi) =
〈Mxi〉 − 〈M〉〈xi〉

σMσxi
(6)

Evatuating, numerator part of the expression,

= 〈Mxi〉 − 〈M〉〈xi〉 (7)

=
〈(

M(xi = 0) + xi
∂M
∂xi

)
xi

〉
−

〈
M(xi = 0) + xi

∂M
∂xi

〉
〈xi〉 (8)

(9)

Since M(xi = 0) and xi are indepedent and ∂M
∂xi

and xi are independent,

= 〈M(xi = 0)〉 〈xi〉 +
〈

∂M
∂xi

〉
〈x2

i 〉 − 〈M(xi = 0)〉〈xi〉 −
〈

∂M
∂xi

〉
〈xi〉2(10)

=
〈

∂M
∂xi

〉 (
〈x2

i 〉 − 〈xi〉2
)

(11)

=
〈

∂M
∂xi

〉
σ2

xi (12)

= σ2
xi

∂

∂xi
〈M〉 (13)

Now,

−Corr(M, xi) = −σxi

σM

〈
∂M
∂xi

〉
(14)



−Corr(M, xi) = −σxi

〈
∂

∂xi

(
M − µM

σM

)〉
(15)

Now, as you know, already, if
〈

∂M
∂xi

〉
= 0, the metric is locally a maxima or

a minima. However, what is counter-intuitive, is that, for that to happen,
the correlation between the the input xi and the metric, has to be 0. That
result make strike you, as suprising. But, in fact, there is a perfectly resonable
explanation, as to why this is the case. Now, we can expand the derivative, as
follows 〈

∂M
∂xi

〉
= M(xi = 1) − M(xi = 0) (16)

Now, when that happens to be 0, M(xi = 1) = M(xi = 0). If Mi is positive, or
can be made positive, by adding some finite constant c. What becomes true is
the following.

That is to say, statiscally, there is no difference, when xi is a 1 or a 0. Now,
notice that when M(xi = 1) or M(xi = 0), it is controlled by every input, other
than xi.
So, what it actually means is that, for the metric to be maximal or minimal,
the input probability, should make the circuit behave as though, the inputs
are independent of each other. To use Agarwal’s terminology, there should be
minimal turbulence.

1.1 Gradient Descent

Now, if we correct xi by the correlation coefficient, we are in fact, just doing
a simple gradient descent. However, since the method is statistical, we end
up with a method, that simulated annealing, implicitly, and thus, are able to
overcome, problems of being stuck in local maximas or minimas.

1.2 Metric and µlt

In the previous chapter, we introduced terms 〈lt〉, which is average of the log of
each term. From the definition of the metric,

M(X) =
2n∑
i

Mi

∏
j

Yij (17)

we can see a direct relationship between metric function and 〈lt〉. Take each
term in the above sum and suppose we take the log of that

log

Mi

∏
j

Yij

 = log Mi +
∑

j

log Yij (18)

The distribution of that, is gaussian, and the expected value of that, is given
by 〈log Mi〉 + 〈log

∏
i Yi〉 = 〈log Mi〉 + µlt. And there is an explicit relationship

between the variance of log Mi and σlt.



2 Spectral Test Set

Now, one can prepare a spectral test set,that changes in time, as follows. Sup-
pose [xk0, xk1, xk2, ..., xkn] is a real weightset, in time instant k. Then, one can
form a binary input vector yki, by taking,

yki = rand() < xki (19)

This way of doing business of keeping a real testset, has several advantages over
keeping track of the sequences of binary vectors themselves. For one, because
of the randomness, it allows for, it incorporates a variation of the simulated
annealing technique,which has an advantage of overcoming, local maximas and
minams. Secondly, suppose, we are able to take the fourier transform/wavelet
transform of the input spectral set, we can decompose them into orthogonal
components, and correlate, and isolate temporal spectra that is both present in
the metric , and the input variables.

3 Spectral Testing

Previous work by G. Giani, S. Sheng, M. Hsaio and V.D.Agarwal has shown the
viability of spectral testing methods using Haradmard transform. In the follow-
ing sections, we will try to provide a general framework for spectral testing.

3.1 Basis

We start by assuming that the relavent spectra, are computed by the orthormal
basis φn(t). Othornormal basis have the following property

〈φ∗i (t)φj(t)〉 = δij (20)

Now, without the loss of generality, we can write the input vector sequence as

xi =
∑

j

aijφj(t) (21)

where 0 ≤
∑

j |aij | ≤ 1 by virtue of xi being a binary random variable.See
previous chapter for proofs.
Now, suppose, we are given a time-based metric function M(X, t). Without the
loss of generality, we can write that function in the basis as

M(X, t) =
∑

k

bkφk(t) (22)



3.2 Results

Now, we will prove a very interesting result. Given that M is function of binary
variables xi, without the loss of generality, the function is expandable as

M(X, t) = m0(t) +
∑

i

mi(t)xi +
∑
i 6=j

mij(t)xixj + (23)

∑
i 6=j 6=k

mijk(t)xixjxk + ... (24)

Also can be written as,

M(X, t) = M(X|xi = 0, t) + xi(t)
∂M
∂xi

(X, t) (25)

Now, expanding xi we, would get the following,

M(X, t) = m0(t) +
∑

i

∑
p

mi(t)aipφp(t) +
∑
i 6=j

∑
p

∑
q

mij(t)aipajqφp(t)φq(t) + ... (26)

Or equivalently,

M(X, t) = M(X|xi = 0, t) +

[∑
i

aipφp(t)

]
∂M
∂xi

(X, t) (27)

Now suppose, we differentiate the above by aie.
∂M
∂aie

= φe(t)
∂M
∂xi

(X, t) (28)

Suppose, we try to calculate, ∂
∂ai0

〈Mφe(t)〉. We will see the following

∂ (Mφe(t))
∂ai0

= φe(t)
∂M
∂xi

(X, t) (29)

In other words, 〈
∂M
∂aie

〉
=

〈
∂ (Mφe(t))

∂ai0

〉
(30)

which is the same as
∂〈M〉
∂aie

=
∂〈Mφe(t)〉

∂ai0
(31)

since aie and ai0 are constants of the simulation and does not vary in time,
in that run. The RHS is true, because we are dealing with boolean random
variables, and they do not have second order effects. Since bk = 〈Mφk(t)〉, we
have a very interesting relationship,

∂〈M〉
∂aik

=
∂bk

∂ai0
(32)

It could be interpreted as follows. Suppose, we are trying to find spectral com-
ponent φk in xi that maximizes the average M, it would be equivalent to max-
imimizing the spectral component φk in M by manipulating ai0.



3.3 Model of bk: Output Component Metric

Definition 2

M(X, t) =
∑

k

Mk (X(t))φk(t) (33)

where we model Mk(X), as

Mk(X) =
2n∑
i

Bki

∏
j

Yij (34)

One way to interpret this model is that, every time vector
∏

j Yij, is presented
at the input at time instant t, it contributes Bkiφk(t) to metric M. For example,
take the metric, for a 2-bit circuit,

M(X, t) = B1,01(1 − x0)x1φ1(t) + B1,11x0x1φ1(t) + B2,10x0(1 − x1)φ2(t)(35)
+B2,00(1 − x0)(1 − x1)φ2(t) + B3,11x0x1φ3(t) (36)

Everytime, vector 11 is presented to the circuit,at time t, the metric M, at that
instance is B1,11φ1(t) + B3,11φ3(t).Strickly speaking, for a sequential circuit, it
is not required,for a vector, presented at different time instants t to contribute
a constant Bki.
Instead,the definition of Bki is as follows.

Definition 3 Given a time instant t, is picked randomly, from a uniform distri-
bution of ts, Bki is statistical average value of component φk(t), at time instant
t, caused by the term

∏
j Yij.

3.4 Conditions and Requirements

If Bki exists , any set of sequential simulations, should converge onto Bki, inde-
pendent of the location, or number of repetitions of the vector

∏
j Yij.

4 Properties

Given a constant weightset x = ai0. From

M =
∑

k

Mk(X(t))φk(t) (37)

Now, bk = 〈Mφk(t)〉 = Mk(ai0). We also know that,

∂M0

∂aie
=

∂bk

∂ai0
(38)

=
∂Mk

∂ai0
(ai0) (39)



It is surprising to note that along the curve of a constant weightset xi = ai0,
∂M0
∂aie

is still well defined and even though, the actual othorgonal component φe(t)
is not present at the input.


