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Abstract

This chapter introduces complex probability into digital circuit analy-
sis. Although the eventual use of modification of probability to make room
for complex numbers, is still unknown, the mathematics and properties of
such numbers, is beautiful.

1 Complex Probability

You may wonder, the physical interpretation of complex probability. Given that
it is complex probability, if it will relate to real world analysis. Answer to this
question, remains, in understanding the definition of probability.

Conventional probability is defined as

probability =
instances true

number of trials
(1)

In our formulation, we will remain true to this definition, expect for the matter
that, we will analyze events, in the fourier domain. As you probably know,a
normalized |F (ωx)| of frequency ωx, is the probability of finding frequency ωx,in
a signal and 6 F (ωx) is its phase, of that frequency, in the signal.

Given circuit function C(x1, x2, x3, ..., xn) where xn are binary independent
variables values. Now,if we take the expected value of C(X), then

E [C(X)] =

[
n∏
i

∫ ∞

−∞
dxipdf(xi)

]
C(X) (2)

The pdf(xi) for the independent binary variable xi is nothing but,

pdf(xi) = (1− pi)δ(xi) + piδ(1− xi) (3)

where pi is the probability of xi being a 1. And δ(x) is the dirac delta1. Dirac
deltas also have this property that∫ ∞

−∞
dxδ(x− a)f(x) = f(a) (4)

1Dirac deltas are impulse functions that extend to infinity.



We can imagine the pdf(xn) concentrated at 0 and 1 with amplitudes 1 − pn

and pn respectively. This formulation is consistant with the Parker-McClusky
formulation. For example, the dropping of the exponent can be derived here.

E[xn] =
∫ ∞

−∞
dx [(1− px)δ(x) + pxδ(1− x)]xn (5)

=
∫ ∞

−∞
dx(1− px)δ(x)xn +

∫ ∞

−∞
dxpxδ(1− x)xn (6)

= 0 + px (7)
(8)

2 The Newer Definition of E [C(X)]

Now, we define

Ω [C(X)] =

[
n∏
i

∫ ∞

−∞
dxipdf(xi)e−ıωixi

]
C(X) (9)

is the spatial frequency distribution of the logic function C(X). You may ask,
aren’t fourier transforms taken over time. Yes. but, this fourier transform is
not taken over time, but taken over space. Basically, it represents the average
of frequency responses emanating from the spatial distribution of impluses.The
function defined here this way, is directly related to the characteristic function
φ[C(X)], we will return to it later.

Now, let’s iterate through how the Parker-Mulkusly expressions change un-
der this definition.

Ω[1] =
∫ ∞

−∞
dx [(1− px)δ(x) + pxδ(1− x)] e−ıωxx1 (10)

= (1− px) + pxe−ıωx (11)

Ω[0] =
∫ ∞

−∞
dx [(1− px)δ(x) + pxδ(1− x)] e−ıωxx0 (12)

= 0 (13)

Ω[xn] =
∫ ∞

−∞
dx[(1− px)δ(x) + pxδ(1− x)]e−ıwxxxn (14)

= pxe−ıωx (15)

From the above, we can gather that,

Ω[1− xn] = 1− px (16)



You should notice that these expression become Parker-Mclucksy ones when we
set ωx to 0. The expressions here, are bit a unfriendly and non-symemtric for 0
and 1 case. So, So, we redefine our Ω [C(X)] definition.

Ω [C(X)] =

[
n∏
i

∫ ∞

−∞
dxipdf(xi)e−ıωixi−ıθi

]
C(X) (17)

Now, with this new definition, the expressions become,

Ω[1] =
∫ ∞

−∞
dx [(1− px)δ(x) + pxδ(1− x)] e−ıωxx−ıθx1 (18)

= (1− px)e−ıθx + pxe−ıωx−ıθx (19)

Ω[0] =
∫ ∞

−∞
dx [(1− px)δ(x) + pxδ(1− x)] e−ıωxx−ıθx0 (20)

= 0 (21)

Ω[xn] =
∫ ∞

−∞
dx[(1− px)δ(x) + pxδ(1− x)]e−ıwxx−ıθxxn (22)

= pxe−ıωx−ıθx (23)

Now,

Ω[1− xn] = (1− px)e−ıθx (24)

It should noted that |Ω[C(X]| remains the same with the old and new def-
inition. The proof is trival, because the absolute value of the multiplicative
complex factor

∏n
i e−ıθi is 1.

Now, suppose we replace (1 − px)e−ıθx with X0 and pxe−ıωx−ıθx with X1,
our expressions,get very interesting. Notice that

|X0|+ |X1| = 1 (25)
Ω[0] = 0 (26)

Ω[1− xn] = X0 (27)
Ω[xn] = X1 (28)

(29)

X1 is just a style of notation, not necessarily, X at index 1.
To construct a complex probability function,from a boolean function, one

can do the following, given that boolean function is written as product of sums.
Replace instances of x′n with x0

n and xn with x1
n. For example, ∨(x, y) =

xy + x′y + xy′. Now, the complex ∨(x, y) function isx

∨(X, Y ) = X1Y1 + X0Y1 + X1Y0 (30)



Sample Plots

The following plots were done for a 2-input function with inputs x and y where
px and py are set to 0.5. The g(pxe−ıωx , pye−ıωy ) function is defined as

g(x, y) = (1− px)(1− py) + (1− px)pye−ıωy + px(1− py)e−ıωx

where −π ≤ ωx ≤ π and −π ≤ ωy ≤ π

Conducting Experiments

Here’s a sample piece of code that verifies the spatial spectral of an XOR gate.

% Intialize
% set p_x = 0.5 and p_y = 0.5
Xp = .5;
Yp = .5;
% These variables will be explained later
resolution = 64;
sum = zeros(resolution,resolution);
n = 1000;
% Start Experiment for n iterations
for i =1:n
X = rand(1,1) < Xp;
Y = rand(1,1) < Yp;
% Evaluate function
F = (1-X) .* (Y) + (1-Y) .* X;

% We contruct a matrix
% x\y 0 1
% 0 1 1
% 1 1 1



% and mask that matrix with F
%
% So, when the function turns into a one, the
% repective location in to matrix turns into a
% 1

M = [ (1-X) * (1-Y)*F (1-X) * Y * F ;
X*(1-Y)*F X*Y*F];

% We extend the matrix by appending a lot of zeros
Membedded = [ M zeros(2,resolution-2);
zeros(resolution-2, resolution)];

% We take the fft and sum the result
sum = sum + fftshift(fft2(Membedded));
end;
% Average the result
avg = sum / n;
[Xaxes,Yaxes] = meshgrid( (1:resolution) /
resolution -.5, (1:resolution) /
resolution -.5);

figure(1);
% Graph experimental Result
mesh(Xaxes, Yaxes, abs(avg));
title(’Sample 2-input XOR experimental
frequency plot’);
xlabel(’normalized \omega_x’);
ylabel(’normalized \omega_y’);
zlabel(’ |\oplus(\omega_x,\omega_y)|’);

figure(2);
% Graph theorectical Result
Mtheory = (Yp)*(1-Xp) * exp( -j*2*pi*Xaxes)
+ (Xp)*(1-Yp)* exp(-j*2*pi*Yaxes);

mesh(Xaxes, Yaxes,abs(Mtheory));
title(’Sample 2-input XOR theoretical
frequency plot’);
xlabel(’normalized \omega_x’);
ylabel(’normalized \omega_y’);
zlabel(’ |\oplus (\omega_x,\omega_y)|’);

The output result of this program are



Usage

Currently, we cannot think of any usage other than for Formal Hardware Veri-
fication. Formal Hardware Verification algorithms can exploit the spectral dis-
tribution of circuits and prove their differences or equivalence.


